精英家教网 > 初中数学 > 题目详情
求这样的正整数a,使得方程ax2+2(2a-1)x+4a-7=0至少有一个整数解.
分析:此题求a,可以首先将x看作已知数,利用一元一次方程的求解方法求得a的值(用含有x的式子表示),然后利用a的取值要求可求得a的值.
解答:解:把原方程改为关于a的一次方程(x+2)2a=2x+7(x≠-2),
解得,a=
2x+7
(x+2)2

∵a≥1,
2x+7
(x+2)2
≥0,
解得:-3≤x≤1,
∴x=-3,-1,0,1,
把x=-3,-1,0,1分别代入
2x+7
(x+2)2
,得a=1,a=5,a=
7
4
,a=1.
∵a是正整数,
∴当a=1或a=5时,方程ax2+2(2a-1)x+4a-7=0至少有一个整数解.
点评:此题考查了学生对一元一次方程的求解.解题的关键是抓住a的取值要求,根据要求分析求解即可,注意分类讨论思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
精英家教网
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
精英家教网
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>

科目:初中数学 来源: 题型:

有一人患了流感,经过两轮传染后共有144人患了流感,问:
(1)每轮传染中平均一个人传染了几个人?
(2)按照这样的速度,三轮传染后有多少人患流感?
(3)设前n轮传染的平均数为S1,前n-1轮传染的平均数为S2,是否存在一个正整数K,使S1=KS2?若存在求出所有K的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•东城区一模)我们给出如下定义:如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.
(1)若∠A=2∠B,且∠A=60°,求证:a2=b(b+c).
(2)如果对于任意的倍角三角形ABC(如图),其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?请证明你的结论;
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我们给出如下定义:如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.
(1)若∠A=2∠B,且∠A=60°,求证:a2=b(b+c).
(2)如果对于任意的倍角三角形ABC(如图),其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?请证明你的结论;
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>

科目:初中数学 来源:第1章《解直角三角形》中考题集(20):1.4 解直角三角形(解析版) 题型:解答题

在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).

(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.

(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>

同步练习册答案