7£®Èçͼ£¬µãP1£¨x1£¬y1£©£¬µãP2£¨x2£¬y2£©£¬¡­£¬µãPn£¨xn£¬yn£©ÔÚº¯Êý$y=\frac{1}{x}$£¨x£¾0£©µÄͼÏóÉÏ£¬¡÷P1OA1£¬¡÷P2A1A2£¬¡÷P3A2A3£¬¡­£¬¡÷PnAn-1An¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬Ð±±ßOA1¡¢A1A2¡¢A2A3£¬¡­£¬An-1An¶¼ÔÚxÖáÉÏ£¨nÊÇ´óÓÚ»òµÈÓÚ2µÄÕýÕûÊý£©£¬Èô¡÷P1OA2µÄÄÚ½ÓÕý·½ÐÎB1C1D1E2µÄÖܳ¤¼ÇΪl1£¬¡÷P2A1A2µÄÄÚ½ÓÕý·½ÐÎB2C2D2E2µÄÖܳ¤¼ÇΪl2£¬¡­£¬¡÷PnAn-1AnµÄÄÚ½ÓÕý·½ÐÎBnCnDnEnµÄÖܳ¤¼ÇΪln£¬ÔòÓú¬nµÄʽ×Ó±íʾl1+l2+l3+¡­+lnΪ£¨¡¡¡¡£©
A£®$\frac{8\sqrt{n}}{3}$B£®2$\sqrt{n}$C£®$\frac{4\sqrt{n}}{3}$D£®$\frac{2\sqrt{n}}{3}$

·ÖÎö ÓÉÓÚ¡÷P1OA1ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¿ÉÖªÖ±ÏßOP1µÄ½âÎöʽΪy=x£¬½«ËüÓëy=$\frac{1}{x}$£¨x£¾0£©ÁªÁ¢£¬Çó³ö·½³Ì×éµÄ½â£¬µÃµ½µãP1µÄ×ø±ê£¬ÔòA1µÄºá×ø±êÊÇP1µÄºá×ø±êµÄÁ½±¶£¬´Ó¶øÈ·¶¨µãA1µÄ×ø±ê£»ÓÉÓÚ¡÷P1OA1£¬¡÷P2A1A2¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÔòA1P2¡ÎOP1£¬Ö±ÏßA1P2¿É¿´×÷ÊÇÖ±ÏßOP1ÏòÓÒƽÒÆOA1¸öµ¥Î»³¤¶ÈµÃµ½µÄ£¬Òò¶øµÃµ½Ö±ÏßA1P2µÄ½âÎöʽ£¬Í¬Ñù£¬½«ËüÓëy=$\frac{1}{x}$£¨x£¾0£©ÁªÁ¢£¬Çó³ö·½³Ì×éµÄ½â£¬µÃµ½µãP2µÄ×ø±ê£¬ÔòP2µÄºá×ø±êÊÇÏ߶ÎA1A2µÄÖе㣬´Ó¶øÈ·¶¨µãA2µÄ×ø±ê£»ÒÀ´ËÀàÍÆ£¬´Ó¶øÈ·¶¨µãAnµÄ×ø±ê£¬µÃ³öOAnµÄ³¤£¬È»ºó¸ù¾Ýl1=$\frac{4}{3}$OA1£¬l2=$\frac{4}{3}$A1A2£¬l3=$\frac{4}{3}$A2A3¡­ln=$\frac{4}{3}$An-1An£¬¼´¿ÉÇóµÃl1+l2+l3+¡­+ln=$\frac{4}{3}$OAn=$\frac{4}{3}$¡Á2 $\sqrt{n}$=$\frac{8}{3}$$\sqrt{n}$£®

½â´ð ½â£º¹ýP1×÷P1M1¡ÍxÖáÓÚM1£¬ÈçͼËù£º
Ò×ÖªM1£¨1£¬0£©ÊÇOA1µÄÖе㣬
¡àA1£¨2£¬0£©£®
¿ÉµÃP1µÄ×ø±êΪ£¨1£¬1£©£¬
¡àP1OµÄ½âÎöʽΪ£ºy=x£¬
¡ßP1O¡ÎA1P2£¬
¡àA1P2µÄ±í´ïʽһ´ÎÏîϵÊýÏàµÈ£¬
½«A1£¨2£¬0£©´úÈëy=x+b£¬
¡àb=-2£¬
¡àA1P2µÄ±í´ïʽÊÇy=x-2£¬
Óëy=$\frac{1}{x}$£¨x£¾0£©ÁªÁ¢£¬½âµÃP2£¨1+$\sqrt{2}$£¬-1+$\sqrt{2}$£©£®
·ÂÉÏ£¬A2£¨2$\sqrt{2}$£¬0£©£®
P3£¨$\sqrt{2}$+$\sqrt{3}$£¬-$\sqrt{2}$+$\sqrt{3}$£©£¬A3£¨2$\sqrt{3}$£¬0£©£®
ÒÀ´ËÀàÍÆ£¬µãAnµÄ×ø±êΪ£¨2$\sqrt{n}$£¬0£©£¬
¡ßl1=$\frac{4}{3}$OA1£¬l2=$\frac{4}{3}$A1A2£¬l3=$\frac{4}{3}$A2A3¡­ln=$\frac{4}{3}$An-1An£¬
¡àl1+l2+l3+¡­+ln=$\frac{4}{3}$OAn=$\frac{4}{3}$¡Á2$\sqrt{n}$=$\frac{8}{3}$$\sqrt{n}$£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£¬Õý·½ÐεÄÐÔÖʵȣ¬¹Ø¼üÊÇÕÒ³öÇóPµã×ø±êµÄ¹æÂÉ£¬ÒÔÕâ¸ö¹æÂÉΪ»ù´¡Çó³öPnµÄºá×ø±ê£¬½ø¶øÇó³öAnµÄºá×ø±êµÄÖµ£¬´Ó¶ø¿ÉµÃ³öËùÇóµÄ½á¹û£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¼ÆË㣺
£¨1£©$\root{3}{27}$+$\sqrt{£¨-3£©^{2}}$£»
£¨2£©|-$\sqrt{3}$|¡Á£¨$\sqrt{3}$-$\frac{1}{\sqrt{3}}$£©£»
£¨3£©$\sqrt{0.09}$+$\root{3}{-8}$-$\sqrt{\frac{1}{4}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¹ØÓÚx£¬yµÄ·½³Ì×é$\left\{\begin{array}{l}{x+y=m+1}\\{x-2y=4m+1}\end{array}\right.$µÄ½â¶¼ÊÇÕýÊý£¬ÏÂÁнáÂÛ£º¢Ù-$\frac{1}{2}$£¼m£¼1£»¢Úµ±m=-$\frac{1}{4}$ʱ£¬·½³Ì×éµÄ½âÔÚÒ»´Îº¯Êýy=4x-$\frac{7}{4}$µÄͼÏóÉÏ£»¢Ûµ±0£¼y£¼xʱ£¬-$\frac{1}{3}$£¼m£¼0£¬ÆäÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®0¸öB£®1¸öC£®2¸öD£®3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬Õý·½ÐÎABCDÊÇÒ»Õű߳¤Îª12¹«·ÖµÄƤ¸ï£®Æ¤µñʦ¸µÏëÔÚ´ËƤ¸ïÁ½ÏàÁڵĽÇÂä·Ö±ðÇÐÏ¡÷PDQÓë¡÷PCRºóµÃµ½Ò»¸öÎå±ßÐÎPQABR£¬ÆäÖÐPD=2DQ£¬PC=RC£¬ÇÒP¡¢Q¡¢
RÈýµã·Ö±ðÔÚCD¡¢AD¡¢BCÉÏ£¬ÈçͼËùʾ£®
£¨1£©µ±Æ¤µñʦ¸µÇÐÏ¡÷PDQʱ£¬ÈôDQ³¤¶ÈΪx¹«·Ö£¬ÇëÄãÒÔx±íʾ´Ëʱ¡÷PDQµÄÃæ»ý£® 
£¨2£©³Ð£¨1£©£¬µ±xµÄֵΪ¶àÉÙʱ£¬Îå±ßÐÎPQABRµÄÃæ»ý×î´ó£¿ÇëÍêÕû˵Ã÷ÄãµÄÀíÓɲ¢Çó³ö´ð°¸£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬¡ÑOÊÇ¡÷ABCµÄÍâ½ÓÔ²£¬ACΪֱ¾¶£¬ÏÒBD=BA£¬BE¡ÍDC½»DCµÄÑÓ³¤ÏßÓÚµãE£®
£¨1£©ÇóÖ¤£º¡Ï1=¡ÏBAD£»
£¨2£©ÇóÖ¤£ºBEÊÇ¡ÑOµÄÇÐÏߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£¬AB¡ÎCD£¬AE½»CDÓÚµãC£¬DE¡ÍAEÓÚµãE£¬Èô¡ÏA=42¡ã£¬Ôò¡ÏD=48¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÔÚijУ¡°ÎÒµÄÖйúÃΡ±Ñݽ²±ÈÈüÖУ¬ÓÐ7ÃûѧÉú²Î¼Ó¾öÈü£¬ËûÃǾöÈüµÄ×îÖճɼ¨¸÷²»Ïàͬ£¬ÆäÖÐÒ»ÃûѧÉúÏëÒªÖªµÀ×Ô¼ºÄÜ·ñ½øÈëÇ°3Ãû£¬Ëû²»½öÒªÁ˽â×Ô¼ºµÄ³É¼¨£¬»¹ÒªÁ˽âÕâ7ÃûѧÉú³É¼¨µÄ£¨¡¡¡¡£©
A£®ÖÚÊýB£®·½²îC£®Æ½¾ùÊýD£®ÖÐλÊý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁжþ´Î¸ùʽÖУ¬Óë$\sqrt{3}$ÊÇͬÀà¶þ´Î¸ùʽµÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{18}$B£®$\sqrt{\frac{1}{3}}$C£®$\sqrt{24}$D£®$\sqrt{0.3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖª$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$ÊÇ·½³Ì×é$\left\{\begin{array}{l}{ax+by=3}\\{bx+ay=-7}\end{array}\right.$µÄ½â£¬Ôò´úÊýʽ£¨a+b£©£¨a-b£©µÄֵΪ-8£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸