精英家教网 > 初中数学 > 题目详情

(1)如图1,正方形ABCD的面积为2a,将正方形ABCD的对角线BD绕点B逆时针旋转90°至BE,以BD和BE为邻边作正方形BDFE,则此正方形BDFE的面积为______.(用含a的代数式表示);
(2)如图2所示,再将正方形BDFE的对角线BF绕点B逆时针旋转90°至BG,以BF和BG为邻边作正方形BFHG,则此正方形BFHG的面积为______(用含a的代数式表示);
(3)如果按着上述的过程作第三次旋转后,所得到的正方形的面积为______(用含a的代数式表示);
(4)在一块边长为10米的正方形空地内种植上草坪(如图3阴影部分所示),由于这块正方形空地的左边和前边都有许多空地,所以,就在它的左边和前边(按着图2所示的过程)连续两次对这块草坪扩大种植面积,最后如图3所示的整个区域内都种上草坪,那么此时的草坪面积是多少平方米?

解:(1)已知正方形的面积为2a,则边长AB=
根据勾股定理可得BD=,所以正方形BDFE的面积为4a;

(2)依题意得出GF=2,则HG=
则正方形BFHG的面积为8a;

(3)根据规律可得下个正方形的面积为16a;

(4)依据上面的规律可知:图形的总面积为8a+a+2a=11a,
由题意得:2a=102,即a=50,
∴图形的总面积为11×50=550(平方米).
分析:(1)可求出边长AB,BD的长,继而可求出正方形BDFE的面积为4a.
(2)可求出边长GF,HG的长,继而可求出正方形BFHG的面积.
(3)观察(1),(2),可知其面积按2的倍数递增,可知下个正方形的面积为16a.
(4)根据规律可知图形的总面积为11a,a=50,易求出图形的总面积.
点评:本题综合考查了旋转的性质以及正方形的性质,考生要注意的是总结规律解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,是正方形的表面展形图,如果相对两个面数字之和相等,且A+B+C=14,则6A-2B+3C=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在正方形网格上,与△ABC相似的三角形是(  )
A、△NBDB、△MBDC、△EBDD、△FBD

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在正方形ABCD内,以D点为圆心,AD长为半径的弧与以BC为直径的半圆交于点P,延长CP、AP交AB、BC于点M、N.若AB=2,则AP等于(  )
A、
5
2
B、
2
10
5
C、
2
5
5
D、
10
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在正方形网格图中,每个小正方形的边长均为 1,则∠1的正弦值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,E是BC上一点,且BC:EC=4:1,F是DC的中点.
(1)判断△AEF的形状,并说明理由;
(2)若正方形的边长为4,求△AEF的面积.

查看答案和解析>>

同步练习册答案