精英家教网 > 初中数学 > 题目详情

【题目】先化简÷,然后再从-2x≤2的范围内选取一个合适的x的整数值代入求值

【答案】4.

【解析】试题分析:先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x的取值范围得出合适的x的值,将其代入化简后的代数式中即可得出结论.

试题解析:原式===

其中,即x≠﹣101

∵﹣2x≤2x为整数,∴x=2

x=2代入中得: ==4

考点:分式的化简求值.

型】解答
束】
21

【题目】解方程:

【答案】无解

【解析】试题分析:把方程的两边都乘以(x+2)(x-2),化为整式方程求解,求出未知数的值后要验根.

解:

(x-2)2-(x+2)2=16,

x2-4x+4+x2+4x+4=16,

x2=4,

x=±2.

检验:当x=±2时,(x+2)(x-2)=0,所以原方程无解.

故答案为:无解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某区在实施居民用水管理前,随机调查了部分家庭(单位:户)去年的月均用水量(单位:t),并将调查数据进行整理,绘制出如下不完整的统计图表:

请解答以下问题:

(1)把上面的频数分布表和频数分布直方图补充完整;

(2)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?

(3)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=4,E,F分别是边BC,CD边上的动点,且AE=AF,设△AEF的面积为y,EC的长为x.

(1)求y与x之间的函数表达式,并写出自变量x的取值范围.
(2)当x取何值时,△AEF的面积最大,最大面积是多少?
(3)在直角坐标系中画出y关于x的函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点C∠AOB的一边OA上,过点C的直线DE∥O B.做∠ACD的平分线CF,过点CCF的垂线CG,如图所示.

(Ⅰ)若∠AOB=40°,求∠ACD∠ECF的度数;

(Ⅱ)求证:CG平分∠OCD;

(Ⅲ)延长FCOB于点H,用直尺和三角板过点OOR⊥FH,垂足为R,过点O

FH的平行线交ED于点Q.先补全图形,再证明∠COR=∠GCO,∠CQO=∠CHO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为4的等腰直角三角形.
(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);
(2)请求出所制作圆锥底面的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形的对角线相交于点,过点,连接,连接于点.

(1)求证:;

(2)若菱形的边长为2, .求的长.

【答案】(1)证明见解析(2)

【解析】试题分析:(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;

(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.

(1)证明:在菱形ABCD中,OC=AC

DE=OC

DEAC

∴四边形OCED是平行四边形.

ACBD

∴平行四边形OCED是矩形.

OE=CD

(2)在菱形ABCD中,∠ABC=60°

AC=AB=2.

∴在矩形OCED中,

CE=OD=

RtACE中,

AE=

点睛:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.

型】解答
束】
25

【题目】如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).

(1)求反比例函数与一次函数的表达式;

(2)结合图像写出不等式的解集;

(3)点E为y轴上一个动点,若SAEB=10,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于反比例函数y= 的图象,下列说法正确的是(
A.图象经过点(1,1)
B.两个分支分布在第二、四象限
C.两个分支关于x轴成轴对称
D.当x<0时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小方格都是边长为1个单位长度的正方形,△ABC的顶点和点O均在网格图的格点上,将△ABC绕点O逆时针旋转90°,得到△A1B1C1
(1)请画出△A1B1C1
(2)以点O为圆心, 为半径作⊙O,请判断直线AA1与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图所示的一块地,已知AD=12米,CD=9米,∠ADC=90,AB=39米,BC=36米,求这块地的面积.

查看答案和解析>>

同步练习册答案