精英家教网 > 初中数学 > 题目详情

【题目】如图,BE是圆O的直径,AEB的延长线上,AP为圆O的切线,P为切点,弦PD垂直于BE于点C.

(1)求证:∠AOD=∠APC;

(2)若OC:CB=1:2,AB=6,求圆O的半径及tan∠APB.

【答案】(1)见解析;(2)

【解析】试题分析:(1)连接OP,可结合已知的等角和等腰三角形、直角三角形的性质进行证明;

(2)根据OC、BC的比例关系,可用未知数表示出OC、BC的表达式,进而可得OP、OB的表达式;在Rt△AOP中,PC⊥OA,根据射影定理得:PC2=PCAC,PC2的表达式可在Rt△OPC中由勾股定理求得,由此求得未知数的知,从而确定PC、CE的长,也就能求出⊙O的半径和∠APB的正切值.

试题解析:(1)连接OP

∵OP=OD,∴∠OPD=∠D,

∵PD⊥BE,

∴∠OCD=90°,

在Rt△OCD中,∠D+∠AOD=90°,

又∵AP是⊙O的切线,

∴AP⊥OP,

则∠OPD+∠APC=90°,

∴∠AOD=∠APC;

(2)连接PE

∴∠BPE=90°(直径所对的圆周角是直角)

AP是⊙O的切线

∴∠APB=∠OPE=∠PEA,

∵OC:CB=1:2,

设OC=x,则BC=2x,OP=OB=3x,

在Rt△OPC中,OP=3x,OC=x,由勾股定理得

PC2=OP2﹣OC2=8x2

在Rt△OPC中,PC⊥OA,由射影定理得

PC2=OCAC,即8x2=x(2x+6),6x2=6x,

解得x=0(舍去),x=1

OP=OB=3,PC=2,CE=OC+OE=3+1=4,

tanAPB=tanPEC=

∴⊙O的半径为3,∠APB的正切值是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=70°,⊙OCA、CB分别于点A和点B,则弦AB所对的圆周角的度数为(  )

A. 110° B. 55° C. 55°或 110° D. 55 125°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了汉字听写大赛,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:

组别

成绩x

频数(人数)

1

25≤x<30

4

2

30≤x<35

6

3

35≤x<40

14

4

40≤x<45

a

5

45≤x<50

10

请结合图表完成下列各题:

(1)求表中a的值;

(2)请把频数分布直方图补充完整;

(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?

(4)510名同学中,有4名男生,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,试用列表法或画树状图的方法求小宇和小强两名男同学能分在一组的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1) P从点A开始沿AB边向B1cm/s的速度移动,点QB点开始沿BC边向点C2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.

(2)P点沿射线AB方向从A点出发以1cm/s的速度移动,点 Q沿射线 CB方向从C点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,PBQ的面积为1cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 在平面直角坐标系xOy中,点A1,A2,A3,···和B1,B2,B3,···分别在直线和x轴上.OA1B1B1A2B2B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2,那么点的纵坐标是  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是(  )

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有两个可以自由转动的均匀转盘A,B,都被分成3等份,每份内均标有数字,小明和小亮用这两个转盘做游戏,游戏规则如下:分别转动转盘AB,两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止),若和为偶数,则小明获胜;如果和为奇数,那么小亮获胜.

(1)请画出树状图,求小明获胜的概率P(A)和小亮获胜的概率P(B).

(2)通过(1)的计算结果说明该游戏的公平性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“校园手机”现象越来越受到社会的关注﹒春节期间,小明随机调查了城区若干名同学和家长对中学生带手机现象的看法.统计整理并制作了如下的统计图:

(1)这次的调查对象中,家长有多少人;

(2)图②中表示家长“赞成”的圆心角的度数为多少度;

(3)开学后,甲、乙两所学校对各自学校所有学生带手机情况进行了统计,发现两校共有2384名学生带手机,且乙学校带手机的学生数是甲学校带手机学生数的,求甲、乙两校中带手机的学生数各有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在△ABC中,∠ACB=90°,以AB为直径作⊙O;过点C作直线CDAB的延长线于点D,且BD=OBCD=CA

1)求证:CD是⊙O的切线.

2)如图(2),过点CCEAB于点E,若⊙O的半径为8,∠A=30°,求线段BE

查看答案和解析>>

同步练习册答案