【题目】在平面直角坐标系中,已知点O为坐标原点,点A(0,4).△AOB是等边三角形,点B在第一象限.
(1)如图①,求点B的坐标;
(2)点P是x轴上的一个动点,连接AP,以点A为旋转中心,把△AOP逆时针旋转,使边AO与AB重合,得△ABD.
①如图②,当点P运动到点(,0)时,求此时点D的坐标;
②求在点P运动过程中,使△OPD的面积等于的点P的坐标(直接写出结果即可).
【答案】(1)(,2);(2)①点D坐标(,),②点P的坐标分别为(,0)、(,0)、(,0)、(,0).
【解析】
(1)过点B作BE⊥y轴于点E,作BF⊥x轴于点F.依题意得BF=OE=2,利用勾股定理求出OF,然后可得点B的坐标.
(2)①由△ABD由△AOP旋转得到,证明△ABD≌△AOP.AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等边三角形.利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函数求出BG=BDcos60°,DG=BDsin60°.然后求出OH,DH,然后求出点D的坐标.
②本题分三种情况进行讨论,设点P的坐标为(x,0):第一种情况:当点P在x轴正半轴上时,第二种情况:当P在x轴负半轴,OP<时,第三种情况:当点P在x轴的负半轴上,且OP≥时,此时点D在x轴上或第四象限.综合上面三种情况即可求出符合条件的值.
解:(1)如图①,过点B作BE⊥y轴于点E,作BF⊥x轴于点F,
∵△AOB是等边三角形,OA=4,
∴BF=OE=2.
在Rt△OBF中,
由勾股定理,得:,
∴点B的坐标为(,2).
(2)①如图②,过点B作BE⊥y轴于点E,作BF⊥x轴于点F,过点D作DH⊥x轴于点H,延长EB交DH于点G.则BG⊥DH.
∵△ABD由△AOP旋转得到,
∴△ABD≌△AOP.
∴∠ABD=∠AOP=90°,.
∵△AOB是等边三角形,
∴∠ABO=60°.
∵BE⊥OA,
∴∠ABE=30°,
∴∠DBG=60°
在Rt△DBG中,.
∵sin60°=,
∴DG=DBsin60°=,
∴,.
∴点D的坐标为(,).
②点P的坐标分别为:(,0)、(,0)、(,0)、(,0).
假设存在点P,在它运动过程中,使△OPD的面积等于.
设OP=x,下面分三种情况讨论.
第一种情况:
当点P在x轴正半轴上时,如图③,BD=OP=x,
在Rt△DBG中,∠DBG=60°,
∴DG=BDsin60°=,
∴.
∵△OPD的面积等于,
∴,.
解得:,(舍去).
∴点P1的坐标为(,0).
第二种情况:
当点P在x轴的负半轴上,且OP<时,此时点D在第一象限,如图④,
在Rt△DBG中,∠DBG=30°,BG=BDcos30°=.
∴,
∵△OPD的面积等于,
∴,.
解得:,.
∴点P2的坐标为(,0).点P3的坐标为(,0).
第三种情况:
当点P在x轴的负半轴上,且OP≥时,此时点D在x轴上或第四象限,如图⑤,
在Rt△DBG中,∠DBG=60°,
∴DG=BDsin60°=.
∵△OPD的面积等于,
∴,.
解得:,(舍去).
∴点P4的坐标为:(,0).
综上所述,点P的坐标为:P1(,0)或P2(,0)或P3(,0)或P4(,span>0).
科目:初中数学 来源: 题型:
【题目】取一副三角板按如图所示拼接,固定三角板ADC,将三角板ABC绕点A顺时针方向旋转,旋转角度为α(0°<α≤45°),得到△ABC′.
①当α为多少度时,AB∥DC?
②当旋转到图③所示位置时,α为多少度?
③连接BD,当0°<α≤45°时,探求∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面关于x的方程中:①ax2+x+2=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;⑤=x﹣1.一元二次方程的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过A,B两点,在第一象限的抛物线上取一点D,过点D作DC⊥x轴于点C,交直线AB于点E.
(1)求抛物线的函数表达式
(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;
(3)如图2,F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DF,FG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=x12的图象分别交x轴,y轴于A,C两点。
(1)求出A,C两点的坐标;
(2)在x轴上找出点B,使△ACB∽△AOC,若抛物线过A,B,C三点,求出此抛物线的解析式;
(3)在(2)的条件下,设动点P、Q分别从A,B两点同时出发,以相同速度沿AC、BA向C,A运动,连接PQ,设AP=m,是否存在m值,使以A,P,Q为顶点的三角形与△ABC相似?若存在,求出所有m值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,点C圆外一点,OC垂直于弦AD,垂足为点F,OC交⊙O于点E,连接AC,∠BED=∠C.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)是否存在BE平分∠OED的情況?如果存在,求此时∠C的度数;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.
(1)求坡底C点到大楼距离AC的值;
(2)求斜坡CD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E点.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,∠BAC=60°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.解答要求如下:
(1)对于图中△ABC,用尺规作出一条中位线DE;(不必写作法,但应保留作图痕迹)
(2)根据(1)中作出的中位线,写出已知,求证和证明过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com