【题目】(12分)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。
(1)求每天的销售量y(千克)与销售单价x(元)之间的函数关系式。(6分)
(2)该超市销售这种水果每天获取的利润为1040元,那么销售单价为多少元?(6分)
【答案】(1)y=-20x+500,(2)12,21(舍去)
【解析】
试题分析:(1)因为y是x的一次函数,所以设y=kx+b,把x=10,y=300;x=11,y=250代入,然后解方程组即可得到k,b,从而得出y(千克)与x(元)(x>0)的函数关系式;(2)根据每天获取的利润=每千克的利润×每天的销售量得到方程:(x-8)(-50x+800)=1040,然后解方程即可.
试题解析:(1)因为y是x的一次函数,所以设y=kx+b,
∵x=10,y=300;x=13,y=240,
∴,解得,
∴y=﹣20x+500,
(2)根据题意可得:(x﹣8)y=1040,所以(x-8)(-50x+800)=1040,解得x=12或x=21,因为要保证每天销售200千克以上,所以x=21不合题意舍去,所以x=12,
答:销售单价为12元.
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴只有一个公共点.
()求的值.
()怎样平移抛物线就可以得到抛物线?请写出具体的平移方法.
()若点和点都在抛物线上,且,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价-进价).这两种服装的进价,标价如表所示.
(1)求这两种服装各购进的件数;
(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x和直线y=﹣x+5相交于点M,直线PQ⊥x轴,分别交直线y=﹣x+5和直线y=x于点P、Q,点R是y轴上一点,若△PQR为等腰直角三角形.求点R的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=kx+b的图象与x轴、y轴分别交于点A(12,0),与函数y=x的图象交于点E,点E的横坐标为3.
(1)求函数y=kx+b的表达式;
(2)在x轴上有一点F(a,0),过点F作x轴的垂线,分别交函数y=kx+b的图象和函数y=x的图象于点C,D,若四边形OBDC是平行四边形,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证,根据图形可知他得出的这个推论指( )
A. S矩形ABMN=S矩形MNDCB. S矩形EBMF=S矩形AEFN
C. S矩形AEFN=S矩形MNDCD. S矩形EBMF=S矩形NFGD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】知识再现:已知,如图,四边形ABCD是正方形,点M、N分别在边BC、CD上,连接AM、AN、MN,∠MAN=45°,延长CB至G使BG=DN,连接AG,根据三角形全等的知识,我们可以证明MN=BM+DN.
知识探究:(1)在如图中,作AH⊥MN,垂足为点H,猜想AH与AB有什么数量关系?并证明;
知识应用:(2)如图,已知∠BAC=45°,AD⊥BC于点D,且BD=2,AD=6,则CD的长为 ;
知识拓展:(3)如图,四边形ABCD是正方形,E是边BC的中点,F为边CD上一点,∠FEC=2∠BAE,AB=24,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司有A、B两种型号的客车共20辆,它们的载客量、每天的租金如表所示.已知在20辆客车都坐满的情况下,共载客720人.
A型号客车 | B型号客车 | |
载客量(人/辆) | 45 | 30 |
租金(元/辆) | 600 | 450 |
(1)求A、B两种型号的客车各有多少辆?
(2)某中学计划租用A、B两种型号的客车共8辆,同时送七年级师生到沙家浜参加社会实践活动,已知该中学租车的总费用不超过4600元.
①求最多能租用多少辆A型号客车?
②若七年级的师生共有305人,请写出所有可能的租车方案,并确定最省钱的租车方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com