精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是( )
①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四边形ECFG=2SBGE

A.4
B.3
C.2
D.1

【答案】B
【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,
∴CF=BE,
在△ABE和△BCF中,

∴Rt△ABE≌Rt△BCF(SAS),
∴∠BAE=∠CBF,AE=BF,故①正确;
又∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠BGE=90°,
∴AE⊥BF,故②正确;
根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°
∵CD∥AB,
∴∠CFB=∠ABF,
∴∠ABF=∠PFB,
∴QF=QB,
令PF=k(k>0),则PB=2k
在Rt△BPQ中,设QB=x,
∴x2=(x﹣k)2+4k2
∴x=
∴sin=∠BQP= = ,故③正确;
∵∠BGE=∠BCF,∠GBE=∠CBF,
∴△BGE∽△BCF,
∵BE= BC,BF= BC,
∴BE:BF=1:
∴△BGE的面积:△BCF的面积=1:5,
∴S四边形ECFG=4SBGE , 故④错误.
故选:B.
【考点精析】认真审题,首先需要了解相似三角形的性质(对应角相等,对应边成比例的两个三角形叫做相似三角形).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,高速公路的同一侧有A、B两城镇,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,且A′B′=8 km.

(1)要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.请在图中画出P的位置,并作简单说明.

(2)求这个最短距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.

月份n(月)

1

2

成本y(万元/件)

11

12

需求量x(件/月)

120

100


(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;
(2)求k,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5个边长为1的正方形按照如图所示方式摆放,O1,O2,O3,O4,O5是正方形对角线的交点,那么阴影部分面积之和等于________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AD是等腰△ABC底边BC上的高,sinB= ,点E在AC上,且AE:EC=2:3,则tan∠ADE=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标示为(10,0),点B的坐标为(10,8) .

(1)直接写出点C的坐标为:C( ____ ,_____);

(2)已知直线AC与双曲线y= (m≠0)在第一象限内有一点交点Q(5,n),

①求mn的值;

②若动点PA点出发,沿折线AO→OC→CB的路径以每秒2个单位长度的速度运动,到达B处停止,APQ的面积为S,当t取何值时,S=10.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,∠ABC=90°,∠CAB=∠CAD=22.5°,E在AB上,且∠DCE=67.5°,DE⊥AB于E,若AE=1,线段BE的长为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,若COAB,垂足为O,OE、OF分别平分AOCBOC.求EOF的度数;

(2)如图2,若AOC=BOD=80°,OE、OF分别平分AODBOC.求EOF的度数;

(3)若AOC=BOD=α,将BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分AODBOC.若α+β≤180°,α>β,则EOC= .(用含α与β的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=6m.

(1)求∠CAE的度数;
(2)求这棵大树折断前的高度?
(结果精确到个位,参考数据: =1.4, =1.7, =2.4).

查看答案和解析>>

同步练习册答案