精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2+4x+3交x轴于A、B两点,(A在B左侧),交y轴于点C.

(1)求A、B、C三点的坐标.
(2)求抛物线的对称轴及顶点坐标.
(3)抛物线上是否存在点F,使△ABF的面积为1?若存在,求F点的坐标;若不存在,请说明理由.

【答案】
(1)解:∵抛物线y=x2+4x+3交x轴于A、B两点,

∴令y=0,则x2+4x+3=0,

解得x1=﹣3、x2=﹣1,即点A(﹣3,0),B(﹣1,0),

令x=0,则y=3,

∴C(0,3)


(2)解:对称轴: = =﹣2;

顶点坐标:x= =﹣2,y= = =﹣1;

顶点坐标为(﹣2,﹣1)


(3)解:∵A(﹣3,0),B(﹣1,0),

∴AB=2,

设F点坐标为(m,m2+4m+3),

则S△ABF= ×|m2+4m+3|=1,

∴|m2+4m+3|=1,

∴m2+4m+3=1或m2+4m+3=﹣1,

解得:m=﹣2+ 或m=﹣2﹣ 或m=﹣2,

∴点满足要求的点F的坐标为:(﹣2+ ,1)、(﹣2﹣ ,1)、(﹣2,﹣1)


【解析】(1)根据x2+4x+3=0,解得x1=﹣3、x2=﹣1,即点A(﹣3,0),B(﹣1,0),根据抛物线y=x2+4x+3交y轴于点C,可知当x=0时,y=3,所以C(0,3);(2)根据二次函数y=ax2+bx+c的对称轴为x=﹣ ,顶点坐标为( ),求得抛物线的对称轴和顶点坐标;(3)设出F点的横坐标,纵坐标用横坐标表示,将三角形ABF的面积用F点的横坐标表示出来,等于1,建立方程,解之即可.
【考点精析】本题主要考查了抛物线与坐标轴的交点的相关知识点,需要掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=mx+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B(4,1)两点,过点A作y轴的垂线,垂足为M.

(1)求一次函数和反比例函数的解析式;

(2)求△OAM的面积S;

(3)在y轴上求一点P,使PA+PB最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知代数式A=2x2+3xy+2y-1,B=x2-xy+x-

(1)求A2B;

(2)若A2B的值与x的取值无关,求y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一条不完整的数轴上从左到右有A、B、C三个点,其中AB=3,BC=4,设点A、B、C所对应的数的和是p.

(1)若以B为原点,写出点A、C所对应的数,并计算p的值;若以C为原点,p的值为   

(2)若原点O在图中数轴主点A的左侧,且BO=22,求p的值;

(3)若原点O在图中数轴上点B的右侧,且CO=a(a>0),求p的值(用含a的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2
(3)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请在坐标系中作出旋转中心S并写出旋转中心S的坐标:S
(4)在x轴上有一点P,使得PA+PB的值最小,请作图标出P点并写出点P的坐标.P

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点H,G,连接DH,BG.

(1)求证:△AEH≌△CFG;

(2)连接BE,若BE=DE,则四边形BGDH是什么特殊四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点DE运动的时间是t秒(t>0).过点DDFBC于点F,连接DEEF

(1)求证:AE=DF

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.

(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某九年级制学校围绕每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:

(1)该校对多少学生进行了抽样调查?

(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?

(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义一种对正整数n“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:

n=13,则第2018“F”运算的结果是(  )

A. 1 B. 4 C. 2018 D. 42018

查看答案和解析>>

同步练习册答案