精英家教网 > 初中数学 > 题目详情
如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.
求证:PB是⊙O的切线.

【答案】分析:连接OA,OB,只要证明∠OBP=90°即可.
解答:证明:连接OA,OB;
∵PA是⊙O的切线,
∴∠OAP=90°.
∵OA=OB,AB⊥OP,
∴∠AOP=∠BOP.
又∵OA=OB,OP=OP,
∴△AOP≌△BOP(SAS).
∴∠OBP=∠OAP=90°.
∴PB是⊙O的切线.
点评:掌握切线的判定方法,能够找到证明全等三角形的条件,根据全等三角形的性质证明角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.
(1)求证:PC是⊙O的切线;        
(2)若AC=PD,连结BC.求证:AB=2BC.

查看答案和解析>>

科目:初中数学 来源:2012届山东省临沂市莒南县九年级上学期期中考试数学试卷(带解析) 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.(1)求证:PC是⊙O的切线;(2)若AC=PD,连结BC.求证:AB="2BC"

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东省临沂市莒南县九年级上学期期中考试数学试卷(解析版) 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.(1)求证:PC是⊙O的切线;(2)若AC=PD,连结BC.求证:AB=2BC

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.
(1)求证:PC是⊙O的切线;    
(2)若AC=PD,连结BC.求证:AB=2BC.

查看答案和解析>>

科目:初中数学 来源:2013年4月中考数学模拟试卷(58)(解析版) 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.
(1)求证:PC是⊙O的切线;        
(2)若AC=PD,连结BC.求证:AB=2BC.

查看答案和解析>>

同步练习册答案