精英家教网 > 初中数学 > 题目详情
二次函数y=ax2+bx+c的图象如图所示,且P=|a-b+c|+|2a+b|,Q=|a+b+c|+|2a-b|,则P、Q的大小关系为P    Q.
【答案】分析:先由图象开口向下判断出a<0,由对称轴在y轴右侧得出b>0,所以2a-b<0,当x=-1时图象在x轴下方,得出y<0,即a-b+c<0.当x=1时图象在x轴上方,得出y>0,即a+b+c>0,由对称轴公式->1,得出2a+b<0.然后把P,Q化简利用作差法比较大小.
解答:解:根据图象知道:
当x=-1时,y<0,
∴a-b+c<0;
当x=1时,y>0,
∴a+b+c>0;
∵对称轴在x=1的右边,
∴->1,两边同乘以-2a,得b>-2a,
∴2a+b>0;
∵a<0,b>0,
∴2a-b<0;
∴P=|a-b+c|+|2a+b|=-a+b-c+2a+b=a+2b-c,
Q=|a+b+c|+|2a-b|=a+b+c-2a+b=-a+2b+c,
∵图象过原点∴C=0∴P-Q=a+2b-c-(-a+2b+c)=2(a-c)=2a<0
∴P<Q.
点评:主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴交于精英家教网点C(0,
3
)
,当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=ax2+bx+c,当x=
12
时,有最大值25,而方程ax2+bx+c=0的两根α、β,满足α33=19,求a、b、c.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果二次函数y=ax2+bx+c的图象的顶点坐标是(2,4),且直线y=x+4依次与y轴和抛物线相交于P、Q、R三点,PQ:QR=1:3,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0.其中正确结论的序号是
②③④
②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•孝感)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:
①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.
其中正确的是
①②③
①②③
(把正确的序号都填上).

查看答案和解析>>

同步练习册答案