分析 (1)连接OC,由DE为圆O的切线,得到OC垂直于CD,再由AD垂直于DE,得到AD与OC平行,得到一对内错角相等,根据OA=OC,利用等边对等角得到一对角相等,等量代换即可得证;
(2)在直角三角形ADC中,利用锐角三角函数定义求出CD的长,根据勾股定理求出AD的长,由三角形ACD与三角形ABC相似,得到对应边成比例,即可求出AB的长.
解答 证明:(1)连结OC,
∵DE是⊙O的切线,
∴OC⊥DE,
∵AD⊥CE,
∴AD∥OC,
∵OA=OC,
∴∠DAC=∠ACO=∠CAO,
∴AC平分∠BAD;
(2)解:∵AD⊥CE,tan∠CAD=$\frac{3}{4}$,AD=8,
∴CD=6,
∴AC=10,
∵AB是⊙O的直径,
∴∠ACB=90°=∠D,
∵∠DAC=∠CAO,
∴△ACD∽△ABC,
∴AB:AC=AC:AD,
∴AB=$\frac{25}{2}$.
点评 此题考查了切线的性质,以及解直角三角形,熟练掌握切线的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com