精英家教网 > 初中数学 > 题目详情
26、把两个含有45°角的直角三角板如图放置,点D在AC上,连接AE、BD,试判断AE与BD的关系,并说明理由.
分析:可通过全等三角形将相等的角进行转换来得出结论.本题中我们可通过证明三角形BEC和ACD全等得出∠FAD=∠CBD,根据∠CBD+∠CDB=90°,而∠ADF=∠BDC,因此可得出∠AFD=90°,进而得出结论.那么证明三角形AED和ACD就是解题的关键,两直角三角形中,EC=CD,AC=BC,两直角边对应相等,因此两三角形全等.
解答:
证明:BF⊥AE,理由如下:
由题意可知∠DEC=∠EDC=45°,∠CAB=∠CBA=45°,
∴EC=DC,BC=BC,又∠DCE=∠DCB=90°,
∴△ECD和△BCA都是等腰Rt△,
∴EC=DC,AC=BC,∠ECD=∠BCA=90°.
在△AEC和△BDC中
EC=DC,∠ECA=∠DCB,AC=BC,
∴△AEC≌△BDC(SAS).
∴∠EAC=∠DBC.
∵∠DBC+∠CDB=90°,∠FDA=∠CDB,
∴∠EAC+∠FDA=90°.
∴∠AFD=90°,即AF⊥BE.
点评:本题考查了全等三角形的判定与性质,解答本题首先要大致判断出两者的关系,然后通过全等三角形来将相等的角进行适当的转换,从而得出所要得出的角的度数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、把两个含有45°角的大小不同的直角三角板如图放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.
说明:AF⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)把两个含有45°角的直角三角板如图1放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.求证:AF⊥BE.
(2)把两个含有30°角的直角三角板如图2放置,点精英家教网D在BC上,连接BE,AD,AD的延长线交BE于点F.问AF与BE是否垂直?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

把两个含有45°角的直角三角板如图1放置,点D在BC上,连接BE、AD,AD的延长线交于BE于点F.
(1)问:AD与BE在数量上和位置上分别有何关系?说明理由.
(2)若将45°角换成30°如图2,AD与BE在数量和位置上分别有何关系?说明理由.
(3)若将图2中两个三角板旋转成图3、图4、图5的位置,则(2)中结论是否仍然成立,选择其中一种图形进行说明.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

把两个含有45°角的直角三角板如图放置,D在BC点上,连接BD、AD,AD的延长线交BE于点F,求证:AF⊥BE.

查看答案和解析>>

同步练习册答案