精英家教网 > 初中数学 > 题目详情
如图,∠A=50°∠ABC=60°.
(1)若BD为∠ABC平分线,求∠BDC.
(2)若CE为∠ACB平分线且交BD于E,求∠BEC.
(1)80°   (2)115°

试题分析:(1)先利用角平分线的定义求得∠ABD的度数,又∠BDC是△ABD的外角,再利用三角形外角的性质即可得∠BDC的度数.
(2)先利用三角形内角和定理求得∠ACB的度数,再利用角平分线的定义求得∠DCE的度数,最后利用三角形外角的性质求∠BEC的度数.
解:(1)∵BD为∠ABC平分线,
∴∠ABD=∠ABC=×60°=30°,
∴∠BDC=∠A+∠ABD=50°+30°=80°.
(2)∵∠ACB=180°﹣∠A﹣∠ABC=180°﹣50°﹣60°=70°,
又∵CE为∠ACB平分线,
∴∠DCE=∠ACB=×70°=35°,
∴∠BEC=∠DCE+∠BDC=35°+80°=115°.
点评:本题主要考查了三角形的内角和定理,角平分线的定义等知识,注意运用三角形的外角的性质可以简化计算.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知等腰三角形ABC中,∠ACB=90°,点E在AC边的延长线上,且∠DEC=45°,点M、N分别是DE、AE的中点,连接MN交直线BE于点F.当点D在CB边上时,如图1所示,易证MF+FN=BE

(1)当点D在CB边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.
(2)当点D在BC边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个三角形的三条边长分别为1、2,则x的取值范围是
A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=    °.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,DE⊥AB于E,DF⊥BC于D,∠AFD=155°,∠A=∠C,求∠EDF的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.

(1)求证:△ADE≌△BFE;
(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为(     )
A.1B.C.D.2

查看答案和解析>>

同步练习册答案