精英家教网 > 初中数学 > 题目详情

二次函数y=ax2+bx+c(a≠0)中的x与y的部分对应值如下表:

x

﹣3

﹣2

﹣1

0

1

2

3

4

5

y

12

5

0

﹣3

﹣4

﹣3

0

5

12

给出了结论:

(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;

(2)当时,y<0;

(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.

则其中正确结论的个数是(  )

A.1个    B.2个    C. 3个       D.0个

 

【答案】

B.

【解析】

试题分析:由表格数据可知,二次函数的对称轴为直线x=1,

所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为-4;故(1)小题错误;

根据表格数据,当-1<x<3时,y<0,

所以,<x<2时,y<0正确,故(2)小题正确;

二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(-1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;

综上所述,结论正确的是(2)(3)共2个.

故选B.

考点:1.二次函数的最值;2.抛物线与x轴的交点.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴交于精英家教网点C(0,
3
)
,当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=ax2+bx+c,当x=
12
时,有最大值25,而方程ax2+bx+c=0的两根α、β,满足α33=19,求a、b、c.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果二次函数y=ax2+bx+c的图象的顶点坐标是(2,4),且直线y=x+4依次与y轴和抛物线相交于P、Q、R三点,PQ:QR=1:3,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0.其中正确结论的序号是
②③④
②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•孝感)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:
①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.
其中正确的是
①②③
①②③
(把正确的序号都填上).

查看答案和解析>>

同步练习册答案