精英家教网 > 初中数学 > 题目详情
精英家教网如图,在由24个边长都为1的小正三角形组成的正六边形网格中,以格点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长
 
分析:在正六面体中,首先找出以点P为直角的直角三角形,然后应用勾股定理求其斜边长.
解答:精英家教网解:通过作图,知以点P为直角的三角形由四种情况,
如上图,△PCB、△PCA、△PDB、△PDA,均是以点P为直角的直角三角形,
故:在Rt△PCB中,BC=
PC2+PB2
=
12+
3
2
=2;
在Rt△PCA中,AC=
PC2+PA2
=
12+(2
3
)
2
=
13

在Rt△PDB中,BD=
PB2+PD2
=
22+
3
2
=
7

在Rt△PAD中,AD=
PA2+PD2
=
22+(2
3
)
2
=4.
故所有可能的直角三角形斜边的长为4,2,
7
13
点评:本题主要考查勾股定理的应用,难易程度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在由24个边长都为1的小正三角形的网格中,点P是正六边形的一个顶点,Q在网格中的格点(即小正三角形的顶点)上,若以点P,Q为端点的线段的长为无理数,请你写出所有可能的线段PQ的长
 

查看答案和解析>>

科目:初中数学 来源:2010年北京市房山区中考数学二模试卷(解析版) 题型:填空题

(2007•金华)如图,在由24个边长都为1的小正三角形组成的正六边形网格中,以格点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长   

查看答案和解析>>

科目:初中数学 来源:2009年浙江省宁波市中考数学模拟试卷(一)(解析版) 题型:填空题

(2007•金华)如图,在由24个边长都为1的小正三角形组成的正六边形网格中,以格点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长   

查看答案和解析>>

科目:初中数学 来源:2007年浙江省金华市中考数学试卷(解析版) 题型:填空题

(2007•金华)如图,在由24个边长都为1的小正三角形组成的正六边形网格中,以格点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长   

查看答案和解析>>

同步练习册答案