18£®Èçͼ£¬¾­¹ýÔ­µãµÄÅ×ÎïÏßy=-x2+2mx£¨m£¾1£©½»xÖáÕý°ëÖáÓÚµãA£¬¹ýµãP£¨1£¬m£©×÷Ö±ÏßPD¡ÍxÖáÓÚµãD£¬½»Å×ÎïÏßÓÚµãB£¬¼ÇµãB¹ØÓÚÅ×ÎïÏ߶ԳÆÖáµÄ¶Ô³ÆµãΪC£¬Á¬½áCB£¬CP£®
£¨1£©Óú¬mµÄ´úÊýʽ±íʾBCµÄ³¤£®
£¨2£©Á¬½áCA£¬µ±mΪºÎֵʱ£¬CA¡ÍCP£¿
£¨3£©¹ýµãE£¨1£¬1£©×÷EF¡ÍBDÓÚµãE£¬½»CPÑÓ³¤ÏßÓÚµãF£®
¢Ùµ±m=$\frac{5}{4}$ʱ£¬ÅжϵãFÊÇ·ñÂäÔÚÅ×ÎïÏßÉÏ£¬²¢ËµÃ÷ÀíÓÉ£»
¢ÚÑÓ³¤EF½»ACÓÚµãG£¬ÔÚEGÉÏÈ¡Ò»µãH£¬Á¬½áCH£¬ÈôCH=CG£¬ÇÒ¡÷PFEÓë¡÷CHGµÄÃæ»ýÏàµÈ£¬ÔòmµÄÖµÊÇ$\frac{5}{2}$£®

·ÖÎö £¨1£©ÏÈÈ·¶¨B£¨1£¬2m-1£©ºÍÅ×ÎïÏߵĶԳÆÖᣬÔòÀûÓöԳÆÐԵõ½C£¨2m-1£¬2m-1£©£¬ÓÚÊÇ¿ÉÓÃm±íʾBCµÄ³¤£»
£¨2£©½â·½³Ì-x2+2mx=0µÃA£¨2m£¬0£©£¬ÔÙÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽµÃµ½PC2=5m2-10m+5£¬AC2=4m2-4m+2£¬PA2=5m2-4m+1£¬È»ºóÀûÓù´¹É¶¨ÀíµÃµ½5m2-10m+5+4m2-4m+2=5m2-4m+1£¬Ôٽⷽ³Ì¼´¿ÉµÃµ½mµÄÖµ£»
£¨3£©¢Ùµ±m=$\frac{5}{4}$ʱ£¬Å×ÎïÏߵĽâÎöʽΪy=-x2+$\frac{5}{2}$x£¬Cµã×ø±êΪ£¨$\frac{3}{2}$£¬$\frac{3}{2}$£©£¬Pµã×ø±êΪ£¨1£¬$\frac{5}{4}$£©£¬ÔÙÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßPCµÄ½âÎöʽΪy=$\frac{1}{2}$x+$\frac{3}{4}$£¬Ôò¿ÉµÃµ½F£¨$\frac{1}{2}$£¬1£©£¬È»ºó¸ù¾Ý¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¿ÉÅжϵãFÊÇ·ñÔÚÅ×ÎïÏßÉÏ£»
¢Ú×÷CM¡ÍHGÓÚM£¬ÀûÓõÈÑüÈý½ÇÐεÄÐÔÖʵÃGM=HM£¬Ò×µÃÖ±ÏßPCµÄ½âÎöʽΪy=$\frac{1}{2}$x+m-$\frac{1}{2}$£¬Ö±ÏßACµÄ½âÎöʽΪy=£¨-2m+1£©x+4m2-2m£¬ÔÙ·Ö±ðÇó³öF£¨3-2m£¬1£©£¬G£¨$\frac{4{m}^{2}-2m-1}{2m-1}$£¬1£©£¬È»ºóÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½µÃµ½£¨1-3+2m£©•£¨m-1£©=2£¨2m-1-1£©•£¨$\frac{4{m}^{2}-2m-1}{2m-1}$-2m+1£©£¬ÕûÀíµÃ2m2-7m+5=0£¬ÓÚÊǽⷽ³Ì¿ÉµÃµ½mµÄÖµ£®

½â´ð ½â£º£¨1£©µ±x=1ʱ£¬y=-x2+2mx=2m-1£¬ÔòB£¨1£¬2m-1£©£¬
Å×ÎïÏߵĶԳÆÖáΪֱÏßx=-$\frac{2m}{2¡Á£¨-1£©}$=m£¬
¡àC£¨2m-1£¬2m-1£©£¬
¡àBC=2m-1-1=2m-2£»
£¨2£©µ±y=0ʱ£¬-x2+2mx=0£¬½âµÃx1=0£¬x2=2m£¬ÔòA£¨2m£¬0£©£¬
PC2=£¨2m-1-1£©2+£¨2m-1-m£©2=5m2-10m+5£¬AC2=£¨2m-1-2m£©2+£¨2m-1£©2=4m2-4m+2£¬PA2=£¨2m-1£©2+m2=5m2-4m+1£¬
µ±PC2+AC2=PA2£¬¡÷PCAΪֱ½ÇÈý½ÇÐΣ¬PC¡ÍAC£¬
¼´5m2-10m+5+4m2-4m+2=5m2-4m+1£¬
ÕûÀíµÃ2m2-5m+3=0£¬½âµÃm1=$\frac{3}{2}$£¬m2=1£¨ÉáÈ¥£©£¬
¼´µ±mΪ$\frac{3}{2}$ʱ£¬CA¡ÍCP£»
£¨3£©¢ÙÔÚ£®
ÀíÓÉÈçÏ£º
µ±m=$\frac{5}{4}$ʱ£¬Å×ÎïÏߵĽâÎöʽΪy=-x2+$\frac{5}{2}$x£¬Cµã×ø±êΪ£¨$\frac{3}{2}$£¬$\frac{3}{2}$£©£¬Pµã×ø±êΪ£¨1£¬$\frac{5}{4}$£©£¬
ÉèÖ±ÏßPCµÄ½âÎöʽΪy=kx+b£¬
°ÑC£¨$\frac{3}{2}$£¬$\frac{3}{2}$£©£¬P£¨1£¬$\frac{5}{4}$£©´úÈëµÃ$\left\{\begin{array}{l}{\frac{3}{2}k+b=\frac{3}{2}}\\{k+b=\frac{5}{4}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=\frac{3}{4}}\end{array}\right.$£¬
¡àÖ±ÏßPCµÄ½âÎöʽΪy=$\frac{1}{2}$x+$\frac{3}{4}$£¬
µ±y=1ʱ£¬$\frac{1}{2}$x+$\frac{3}{4}$=1£¬½âµÃx=$\frac{1}{2}$£¬ÔòF£¨$\frac{1}{2}$£¬1£©£¬
¶øx=$\frac{1}{2}$ʱ£¬y=-x2+$\frac{5}{2}$x=-$\frac{1}{4}$+$\frac{5}{4}$=1£¬
¡àµãFÔÚÅ×ÎïÏßÉÏ£»
¢Ú×÷CM¡ÍHGÓÚM£¬ÔòGM=HM£¬
P£¨1£¬m£©£¬C£¨2m-1£¬2m-1£©£¬A£¨2m£¬0£©£¬
Ò×µÃÖ±ÏßPCµÄ½âÎöʽΪy=$\frac{1}{2}$x+m-$\frac{1}{2}$£¬Ö±ÏßACµÄ½âÎöʽΪy=£¨-2m+1£©x+4m2-2m£¬
µ±y=1ʱ£¬$\frac{1}{2}$x+m-$\frac{1}{2}$=1£¬½âµÃx=3-2m£¬ÔòF£¨3-2m£¬1£©£¬
µ±y=1ʱ£¬£¨-2m+1£©x+4m2-2m=1£¬½âµÃx=$\frac{4{m}^{2}-2m-1}{2m-1}$£¬ÔòG£¨$\frac{4{m}^{2}-2m-1}{2m-1}$£¬1£©£¬
¡ß¡÷PFEÓë¡÷CHGµÄÃæ»ýÏàµÈ£¬
¡à$\frac{1}{2}$•EF•PE=2•$\frac{1}{2}$•CM•GM£¬
¼´£¨1-3+2m£©•£¨m-1£©=2£¨2m-1-1£©•£¨$\frac{4{m}^{2}-2m-1}{2m-1}$-2m+1£©
ÕûÀíµÃ2m2-7m+5=0£¬½âµÃm1=$\frac{5}{2}$£¬m2=1£¨ÉáÈ¥£©£¬
¼´mµÄֵΪ$\frac{5}{2}$£®
¹Ê´ð°¸Îª$\frac{5}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÐÔÖʺ͵ÈÑüÈý½ÇÐεÄÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£¬¼ÇסÁ½µã¼äµÄ¾àÀ빫ʽ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÂåÄþÏØÎåÔ·ÝÁ¬ÐøÎåÌìµÄ×î¸ßÆøηֱðΪ30£¬27£¬27£¬28£¬33£¨µ¥Î»¡æ£©£¬Õâ×éÊý¾ÝÖеÄÖÐλÊýºÍÖÚÊý·Ö±ðÊÇ£¨¡¡¡¡£©
A£®29£¬33B£®29£¬27C£®30£¬27D£®28£¬27

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÏA=30¡ã£¬a=5£¬½âÕâ¸öÖ±½ÇÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªÈý½ÇÐÎÈý±ß³¤Îªa£¬b£¬c£¬Èç¹û$\sqrt{a-6}$+|b-8|+£¨c-10£©2=0£¬Ôò¡÷ABCÊÇ£¨¡¡¡¡£©
A£®ÒÔaΪб±ßµÄÖ±½ÇÈý½ÇÐÎB£®ÒÔbΪб±ßµÄÖ±½ÇÈý½ÇÐÎ
C£®ÒÔcΪб±ßµÄÖ±½ÇÈý½ÇÐÎD£®²»ÊÇÖ±½ÇÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁÐÓÉ×ó±ßµ½ÓұߵıäÐΣ¬ÊÇÒòʽ·Ö½âµÄÊÇ£¨¡¡¡¡£©
A£®am+bm-1=m£¨a+b£©-1B£®£¨x+2£©£¨x-5£©=x2-3x-10C£®x2+5x+4=x£¨x+5+$\frac{4}{x}$£©D£®x2-4x=x£¨x-4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èçͼ£¬Ò»°ÑÖ±³ßÑØÖ±Ï߶Ͽª²¢´í룬µãE£¬D£¬B£¬FÔÚͬһÌõÖ±ÏßÉÏ£¬Èô¡ÏADE=140¡ã£¬Ôò¡ÏDBCµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®30¡ãB£®40¡ãC£®50¡ãD£®60¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬¡÷ABCÊǵȱßÈý½ÇÐΣ¬ÒÔBCΪֱ¾¶×÷Ô²O£¬½»AC¡¢ABÓÚE¡¢FÁ½µã£¬ÈôAB=4£¬ÔòÒõÓ°²¿·ÖµÄÃæ»ýΪ2$\sqrt{3}$-$\frac{2}{3}$¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬½«Ò»¿éÈý½Ç°åµÄÖ±½Ç¶¥µã·ÅÔÚÖ±³ßµÄÒ»±ßÉÏ£®Èô¡Ï1=38¡ã£¬Ôò¡Ï2=52¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¼×A¡¢BÁ½¸ö´åׯÔÚ×ø±êͼֽÉϵÄ×ø±ê·Ö±ðΪ£¨2£¬5£©¡¢£¨7£¬7£©£¬ÈçͼËùʾ£¬xÖáËùÔÚµÄλÖÃΪһÌõ¸æËß¹«Â·£¬ÏÖÒªÔÚ¹«Â·ÉÏÐÞ½¨Ò»¸ö·þÎñÇøP£¬Ê¹µÃ·þÎñÇøPµ½Á½¸ö´åׯA¡¢BµÄ¾àÀëÖ®ºÍ×îС£®
£¨1£©ÇëÔÚ¹«Â·Éϱê×¢³ö·þÎñÇøPµÄλÖ㻣¨ÒªÇó³ß¹æ×÷ͼ£¬±£Áô±ØÒªµÄ×÷ͼºÛ¼££¬±ØҪʱ¿ÉÓúÚÉ«±Ê¼ÓÖØ£©
£¨2£©Çó³öAPËùÔÚÖ±ÏߵĽâÎöʽ£»
£¨3£©Îª·½±ãÁ½´å´åÃñµ½·þÎñÇø£¬ÄâÔÚÁ½¸ö´åׯµ½·þÎñÇøÖ®¼ä¸÷ÐÞ½¨Ò»ÌõµÀ·£¬ÈôÿÐÞ½¨1ǧÃ×µÀ·Ðè·ÑÓÃ5ÍòÔª£¬Çó³öËùÐèÒªµÄ×Ü·ÑÓã®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸