精英家教网 > 初中数学 > 题目详情

如图,AB∥CD,CP交AB与O,∠A=∠P,若∠C=50°,则∠A=       。

25° 

解析试题分析:已知AB∥CD,则∠COB=180°-∠C=130°。则根据对顶角相等,则∠AOP=∠COB=130°。
则∠A+∠P=180°-∠AOP=50°。因为∠A=∠P所以∠A=25°。
考点:平行线性质等
点评:本题难度较低,主要考查学生对平行线性质知识点的掌握,结合对顶角及三角形内角和知识点综合应用。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图AB∥CD,AD、BC交于点O,∠A=42°,∠C=58°,则∠AOB=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图AB∥CD,∠BAP=35°,∠DCP=45°,则∠APE=
100
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成填空,如图AB∥CD,AE平分∠BAC,CE平分∠ACD.求证:AE⊥CE.
证明:∵AB∥CD
∴∠BAC+∠ACD=180°
两直线平行,同旁内角互补
两直线平行,同旁内角互补

∵AE平分∠BAC,CE平分∠ACB
已知
已知

∴∠1=
1
2
∠BAC,∠2=
1
2
∠ACD
∴∠1+∠2=
1
2
∠BAC+
1
2
∠ACD
=
1
2
(∠BAC+∠ACD)
=
1
2
×180°
=90°
∵∠1+∠2+∠E=180°
三角形内角和定理
三角形内角和定理

∴∠E=180°-(∠1+∠2)
=180°-90°
=90°
∴AE⊥CE
垂直的定义
垂直的定义

查看答案和解析>>

同步练习册答案