精英家教网 > 初中数学 > 题目详情
(1998•金华)如图,已知:在等腰梯形ABCD中,AB∥CD,AC⊥BC,DG⊥AC,过B作EB⊥AB,交AC的延长线于E.
(1)求证:AD2=AC•CE;
(2)当BE=CD时,求证:△DCG≌△EBC.

【答案】分析:(1)因为等腰梯形ABCD,AB∥CD,所以∠DCA=∠CAB,又因为AC⊥BC,EB⊥AB,所以∠EBC=∠CAB,所以△ACB∽△BCE,得,即BC2=AC•CE,又AD=BC,所以AD2=AC•CE
(2)由(1)可知∠EBC=∠BCG=∠CAB,又BE=CD,∠BCE=∠CGD,所以△DCG≌△EBC
解答:证明:(1)∵等腰梯形ABCD,AB∥CD,
∴∠DCA=∠CAB.
∵AC⊥BC,EB⊥AB,
∴∠EBC=∠CAB,∠CEB=∠CBA.
∴△ACB∽△BCE.

即BC2=AC•CE.
∵等腰梯形ABCD,
∴AD=BC.
∴AD2=AC•CE;

(2)∵由(1)知∠EBC=∠BCG=∠CAB,
∵BE=CD,∠BCE=∠CGD,
∴△DCG≌△EBC.
点评:本题中(1)主要考查了相似三角形的判定和等腰梯形的性质,(2)考查了全等三角形的判定
练习册系列答案
相关习题

科目:初中数学 来源:1998年全国中考数学试题汇编《锐角三角函数》(01)(解析版) 题型:选择题

(1998•金华)如图,在Rt△ABC中,∠C=90°,c为斜边,a、b为∠A,∠B所对的直角边,那么( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:解答题

(1998•金华)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,E,D分别是AB,BC的中点,过E,D作⊙O,且与AB相切于E,⊙O与BC的延长线交于F,求⊙O的半径OE的长.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:解答题

(1998•金华)如图,已知:P为⊙O外一点,过P作⊙O的两条割线,分别交⊙O于A、B和C,D,且AB是⊙O的直径,弧AC=弧DC,连接BD,AC,OC.
(1)求证:OC∥BD;
(2)如果PA=AO=4,延长AC与BD的延长线交于E,求DE的长.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:填空题

(1998•金华)如图,△ABC中,DE∥BC,AD=1,DB=2,AE=2,那么EC=   

查看答案和解析>>

同步练习册答案