分析 (1)过B作BH垂直于OA,在直角三角形ABH中,利用锐角三角函数定义表示出tan∠BAO,进而确定出OA的长,得到A的坐标即可;
(2)令t=2(4-t),求出t的值,根据t的范围分三种情况考虑:当0≤t≤2时;当2<t≤$\frac{8}{3}$时;当$\frac{8}{3}$<t≤4时,分别找出S与t的函数解析式即可;
(3)根据(2)的解析式,利用一次函数与二次函数的性质求出S的最大值即可.
解答 解:(1)过点B作BH⊥OA于点H,
∵tan∠BAO=2,B(2,4),即BH=4,OH=2,
∴∠BAO=$\frac{BH}{AH}$=$\frac{4}{OA-OH}$=$\frac{4}{OA-2}$=2,
∴OA=4,
∴A(4,0);
(2)令t=2(4-t),解得:t=$\frac{8}{3}$;
当0≤t≤2时,S=4t;
当2<t≤$\frac{8}{3}$时,S=t(8-2t)=-2t2+8t;
当$\frac{8}{3}$<t≤4时,S=(8-2t)2=4t2-32t+64;
(3)当0≤t≤2时,当t=2时,S有最大值8;
当2<t≤$\frac{8}{3}$时,当t=2时,S有最大值8,∴S<8
当$\frac{8}{3}$<t≤4时,当t=$\frac{8}{3}$时,S有最大值$\frac{64}{9}$,∴S<$\frac{64}{9}$<8,
综上,S的最大值为8.
点评 此题属于四边形综合题,涉及的知识有:坐标与图形性质,锐角三角函数定义,一次函数与二次函数的性质,利用了分类讨论的思想,分类讨论时要做到不重不漏,考虑问题要全面.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 平行四边形 | B. | 菱形 | C. | 矩形 | D. | 正方形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com