【题目】如图1,中,,分别是上的点,且满足.
(1)求证:
(2)在图1中,是否存在与AP相等的线段?若存在,请找出来,并加以证明;若不存在,说明理由.
(3)若将“为上的点”改为:“为DB延长线上的点”其他条件不变(如图2)若,求线段之间的数量关系(用含的式子表示)
【答案】(1)证明详见解析;(2)存在,,理由见解析;(3)
【解析】
(1)由已知可得四边形ABCD是菱形,结合菱形的性质,由可得,即可求得;
(2)过点A作,交BD于点M,证得,得,即可得AP=AQ;
(3)过点A作,交BD的延长线于点M,作,可证,得,即,易证,即可得到.
(1)证明:∵四边形ABCD是平行四边形,,
∴四边形ABCD是菱形,
,
,
,
,
,
,
,
,
.
(2)存在,.
如图,过点A作,交BD于点M,
∴∠APM=∠AMP,
由(1)知,,
∴∠APM=∠AQC,
∴∠AMP=∠AQC,
又∵四边形ABCD为菱形,
∴AB=AC,∠B=∠C,
∴,
∴,
即AP=AQ.
(3)过点A作,交BD的延长线于点M,作,
∵四边形ABCD是平行四边形,
∴AC∥BD,∠C+∠BDC=180°,∠ACD=∠ABM,
∵,
∴∠PAQ+∠BDC=180°,
∴∠APB+∠AQD=180°,
∴∠APB=∠AQC,
又∵AP=AM,
∴∠APB=∠AMP,
∴∠AQC=∠AMP,
∴,
∴,
,
在等腰△APM中,AH⊥PM,
∴,
,
即.
科目:初中数学 来源: 题型:
【题目】如图,AB 是⊙O的直径,∠DAB的角平分线AC交⊙O于点C,过点C作CD⊥AD于D,AB的延长线与DC的延长线相交于点P,∠ACB的角平分线CE交AB于点F、交⊙O于E.
(1)求证:PC与⊙O相切;
(2)求证:PC=PF;
(3)若AC=8,tan∠ABC=,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,直线与x轴交于点C.
(1)求点B的坐标;
(2)横、纵坐标都是整数的点叫做整点.记线段围成的区域(不含边界)为G.
①当时,结合函数图象,求区域G内整点的个数;
②若区域G内恰有2个整点,直接写出k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(n,2),B(1,4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.
(3)直接写出kx+b>时,的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系第一象限内,直线与直线的内部作等腰,使,边轴,轴,在直线上,点C在直线上,CB的延长线交直线于点,作等腰,使轴,轴,点在直线上,按此规律,则等腰的腰长为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.
求证:
(1)△ABC≌△DCB;
(2)DE·DC=AE·BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】[阅读理解]
当且时,因为所以从而(当且仅当时取等号).由此可知,在且的条件下,当时,代数式有最小值为.
[实践应用]
(1)在的条件下,当 时,有最小值,且最小值为 ;
(2)设,求的最小值,并指出当取得该最小值时对应的的值;
[拓展延伸]
在平面直角坐标系中,点点.点是函数在第一象限内图象上的一个动点,过点作垂直于轴,垂直于轴,垂足分别为点.设点的横坐标为,四边形的面积为.
(3)求和之间的函数关系式:
(4)试判断当的值最小时,四边形是何特殊四边形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某人开车从家出发去植物园游玩,设汽车行驶的路程为S(千米),所用时间为t(分),S与t之间的函数关系如图所示.若他早上8点从家出发,汽车在途中停车加油一次,则下列描述中,不正确的是( )
A.汽车行驶到一半路程时,停车加油用时10分钟
B.汽车一共行驶了60千米的路程,上午9点5分到达植物园
C.加油后汽车行驶的速度为60千米/时
D.加油后汽车行驶的速度比加油前汽车行驶的速度快
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:
类别 | 重视 | 一般 | 不重视 |
人数 | a | 15 | b |
(1)求表格中a,b的值;
(2)请补全统计图;
(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com