分析 (1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;
(2)由第一问的全等得到AE=CM=2,正方形的边长为6,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=8-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.
解答 (1)证明:∵△DAE逆时针旋转90°得到△DCM,
∴∠FCM=∠FCD+∠DCM=180°,
∴F、C、M三点共线,
∴DE=DM,∠EDM=90°,
∴∠EDF+∠FDM=90°,
∵∠EDF=45°,
∴∠FDM=∠EDF=45°,
在△DEF和△DMF中,
$\left\{\begin{array}{l}{DE=DM}\\{∠EDF=∠MDF}\\{DF=DF}\end{array}\right.$,
∴△DEF≌△DMF(SAS),
∴EF=MF;
(2)解:设EF=MF=x,
∵AE=CM=2,且BC=6,
∴BM=BC+CM=6+2=8,
∴BF=BM-MF=BM-EF=8-x,
∵EB=AB-AE=6-2=4,
在Rt△EBF中,由勾股定理得EB2+BF2=EF2,
即42+(8-x)2=x2,
解得:x=5,
则EF=5.
点评 此题考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.
科目:初中数学 来源: 题型:选择题
A. | 2.5千米 | B. | 1.5千米 | C. | 2.4千米 | D. | 14.9千米 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com