分析 (1)先由∠ACB=90°,得出∠1+∠BCD=90°,而∠1=∠B,等量代换得到∠B+∠BCD=90°,再根据三角形内角和定理求出∠BDC=90°,根据垂直的定义即可证明CD⊥AB;
(2)根据三角形的面积公式可得S△ABC=$\frac{1}{2}$AB•CD=$\frac{1}{2}$AC•BC,那么CD=$\frac{AC•BC}{AB}$,将数值代入计算即可求解.
解答 (1)证明:∵∠ACB=90°,
∴∠1+∠BCD=90°,
∵∠1=∠B,
∴∠B+∠BCD=90°,
∴∠BDC=90°,
∴CD⊥AB;
(2)解:∵S△ABC=$\frac{1}{2}$AB•CD=$\frac{1}{2}$AC•BC,
∴CD=$\frac{AC•BC}{AB}$=$\frac{8×6}{10}$=4.8.
点评 本题考查了直角三角形的性质,三角形内角和定理,垂直的定义,三角形的面积,比较简单.求出∠BDC=90°是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com