【题目】如图,将的高四等分,过每一个等分点作底边的平行线,把三角形的面积分成四部分、、、,则等于______.
【答案】
【解析】
由△ABC的高AD四等分,可得从上到下三角形△AEF、△AGH、△AMN、△ABC的相似比为1:2:3:4,根据相似三角形面积的比等于相似比的平方,可知从上到下三角形△AEF、△AGH、△AMN、△ABC的面积比为1:4:9:16,即可得把三角形的面积分成四部分S1、S2、S3、S4之比.
解:∵△ABC的高AD四等分,且过每一个分点作底边的平行线,
∴从上到下三角形△AEF、△AGH、△AMN、△ABC的相似比为1:2:3:4,
∴从上到下三角形△AEF、△AGH、△AMN、△ABC的面积比为S△AEF:S△AGH:S△AMN:S△ABC =1:4:9:16,
∵如图S2=S△AGH -S△AEF,S3=S△AMN -S△AGH,S4=S△ABC -S△AMN,
∴S1:S2:S3:S4=1:(4-1):(9-4):(16-9)=1:3:5:7.
故答案为:1:3:5:7.
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,点D、E分别是边AC、BC上两点.将三角形ABC沿DE翻折,点C正好落在线段AB上的点F处,使得AF:BF=2:3.若BE=16,则CE的长度为( )
A.18B.19C.20D.21
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,的顶点在正方形两条对角线的交点处,,将绕点旋转,旋转过程中的两边分别与正方形的边和交于点和点(点与点,不重合).
(1)如图①,当时,求,,之间满足的数量关系,并证明;
(2)如图②,将图①中的正方形改为的菱形,其他条件不变,当时,(1)中的结论变为,请给出证明;
(3)在(2)的条件下,若旋转过程中的边与射线交于点,其他条件不变,探究在整个运动变化过程中,,,之间满足的数量关系,直接写出结论,不用加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45°和65°,点A距地面2.3米,点B距地面10.8米,为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?结果保留整数,参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量(袋与销售单价(元之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5.另外每天还需支付其他各项费用80元.
销售单价(元 | 3.5 | 5.5 |
销售量(袋 | 280 | 120 |
(1)请求出与之间的函数关系式;
(2)设每天的利润为元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.
(1)试判断BD与⊙O的位置关系,并说明理由;
(2)当AB=BE=1时,求⊙O的面积;
(3)在(2)的条件下,求HG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=mx2+2mx+n与x轴的一个交点为A(﹣3,0),与y轴的负半轴交于点C.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;
(2)点C关于x轴的对称点为点D,当点D在以AB为直径的半圆上时,求抛物线的解析式;
(3)在(2)的情况下,在抛物线上是否存在一点P,使BP,BD,AB三条之中,其中一条是另两条所夹角的角平分线?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com