精英家教网 > 初中数学 > 题目详情

一个矩形的短边及长边分别为15,27,一内角平分线分长边为两部分,这两部分线段长为


  1. A.
    13与14
  2. B.
    15与12
  3. C.
    11与16
  4. D.
    20与7
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网若一个矩形的短边与长边的比值为
5
-1
2
(黄金分割数),我们把这样的矩形叫做黄金矩形.
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由;
(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:013

一个矩形的短边及长边分别为1527,一内角平分线分长边为两部分,这两部分长为(   

A.1314            B.1512            C.1116            D.207

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝若一个矩形的短边与长边的比值为数学公式(黄金分割数),我们把这样的矩形叫做黄金矩形.
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由;
(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《尺规作图》(02)(解析版) 题型:解答题

(2005•扬州)若一个矩形的短边与长边的比值为(黄金分割数),我们把这样的矩形叫做黄金矩形.
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由;
(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).

查看答案和解析>>

同步练习册答案