精英家教网 > 初中数学 > 题目详情

某数学兴趣小组开展了一次课外活动,过程如下:如图1,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.

(1)求证:DP=DQ;

(2)如图2,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;

(3)如图3,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积.

 

 

【答案】

(1)详见试题解析;(2)详见试题解析;(3)

【解析】

试题分析:

(1)证明△ADP≌△CDQ,即可得到结论:DP=DQ;

(2)证明△DEP≌△DEQ,即可得到结论:PE=QE;

(3)与(1)(2)同理,可以分别证明△ADP≌△CDQ、△DEP≌△DEQ.在Rt△BPE中,利用勾股定理求出PE(或QE)的长度,从而可求得SDEQ=,而△DEP≌△DEQ,所以SDEP=SDEQ=

试题解析:(1)证明:∵∠ADC=∠PDQ=90°

∴∠ADP=∠CDQ

∠DAP=∠DCQ=90°  AD=CD

∴△ADP≌△CDQ(ASA)

∴DP=DQ                                (4分)

(2)猜测:PE=QE                    (5分)

由(1)可知,DP=DQ

∠PDE=∠QDE=45°  DE=DE

∴△DEP≌△DEQ(SAS)

∴PE=QE                             (8分)

(3)∵AB:AP=3:4,AB=6

∴AP=8,BP=2

与(1)同理,可以证明△ADP≌△CDQ

∴CQ=AP=8

与(2)同理,可以证明△DEP≌△DEQ

∴PE=QE

设QE=PE=x,则BE=BC+CQ-QE=14-x

在Rt△BPE中,由勾股定理得:BP2+BE2=PE2

即:22+(14-x)2=x2

解得:x=  即QE=

∴SDEQ=××6=

∵△DEP≌△DEQ

∴SDEP=SDEQ=                (12分)

考点:四边形综合题.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某数学兴趣小组开展了一次活动,过程如下:
设∠BAC=θ(0°<θ<90°)小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.
活动一:
如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.
数学思考:
(1)小棒能无限摆下去吗?答:
 
.(填“能“或“不能”)
(2)设AA1=A1A2=A2A3=1.
①θ=
 
度;
②若记小棒A2n-1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,…),求出此时a2,a3的值,并直接写出an(用含n的式子表示).
精英家教网
活动二:
如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1
数学思考:
(3)若已经向右摆放了3根小棒,则θ1=
 
,θ2=
 
,θ3=
 
(用含θ的式子表示);
(4)若只能摆放4根小棒,求θ的范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•锡山区一模)某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线AB、AC之间,并使小棒两端分别落在两射线上,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1
(1)若已经向右摆放了3根小棒,且恰好有∠A4A3A=90°,则θ=
22.5°
22.5°

(2)若只能摆放5根小棒,则θ的范围是
15°≤θ<18°
15°≤θ<18°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宁德)某数学兴趣小组开展了一次活动,过程如下:
如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.
(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;
(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2
同组的小颖和小亮随后想出了两种不同的方法进行解决;小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2)
小亮的想法:将△ABD绕点A顺时针旋转90°得到△ACG,连接EG(如图3);
小敏继续旋转三角板,在探究中得出当45°<α<135°且α≠90°时,等量关系BD2+CE2=DE2仍然成立,先请你继续研究:当135°<α<180°时(如图4)等量关系BD2+CE2=DE2是否仍然成立?若成立,给出证明;若不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

某数学兴趣小组开展了一次活动,过程如下:
设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线AB,AC之间,并使小棒两端分别落在两射线上.活动一:如图所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A1A2为第1根小棒.
数学思考:
(1)小棒能无限摆下去吗?答:
.(填“能”或“不能”)
(2)设AA1=A1A2=A2A3=1.①θ=
22.5
22.5
度; ②若记小棒A2n-1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,),求此时a2,a3的值,并直接写出an(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
学习了无理数后,某数学兴趣小组开展了一次探究活动:估算
13
的近似值.
小明的方法:
9
13
16

13
=3+k(0<k<1).
(
13
)2=(3+k)2

∴13=9+6k+k2
∴13≈9+6k.
解得 k≈
4
6

13
≈3+
4
6
≈3.67.
问题:
(1)请你依照小明的方法,估算
41
的近似值;
(2)请结合上述具体实例,概括出估算
m
的公式:已知非负整数a、b、m,若a<
m
<a+1,且m=a2+b,则
m
a+
b
2a
a+
b
2a
(用含a、b的代数式表示);
(3)请用(2)中的结论估算
37
的近似值.

查看答案和解析>>

同步练习册答案