精英家教网 > 初中数学 > 题目详情
精英家教网如图,以正方形ABCD的一边向形外作等边△ABE,BD与EC交于点F,且DF=EF,则∠AFD等于(  )
A、60°B、50°C、45°D、40°
分析:分别求证△DCF≌△DAF≌△EAF可得∠DFC=∠AFD=∠AFE,根据∠DFC+∠AFD+∠AFE=180°,可得∠DFC=∠AFD=∠AFE=60°
解答:精英家教网解:连接AC,
∵BD为AC的垂直平分线,
∴FA=FC,
∵四边形ABCD是正方形,
∴AD=DC=AB,
在△DCF和△DAF中,
DA=DC
DF=DF
CF=AF

∴△DCF≌△DAF,
∵三角形ABE是等边三角形,
∴AE=AB=AD,
在△DAF和△EAF中,
AD=AE
AF=AF
DF=EF

∴△DAF≌△EAF,
∴△DCF≌△DAF≌△EAF,
得:∠DFC=∠AFD=∠AFE,
又∵∠DFC+∠AFD+∠AFE=180°
∴∠DFC=∠AFD=∠AFE=60°
故选 A.
点评:本题考查了正方形各边长相等的性质,考查了正三角形各边长相等的性质,本题中求证△DCF≌△DAF≌△EAF是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=
12

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6
2
,那么AC的长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的斜边BC为一边作正方形BCDE,设正方形的中心为O,连接AO,如果AB=3,AO=2
2
,那么AC的长等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的斜边和一直角边为边长向外作正方形,面积分别为169和25,则另一直角边的长度BC为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC各边为边长的正方形面积分别为S1、S2、S3,且S1+S2+S3=50,则AB=(  )

查看答案和解析>>

同步练习册答案