精英家教网 > 初中数学 > 题目详情
已知:在平面直角坐标系中,抛物线y=ax2-x+3(a≠0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.
(1)求该抛物线的解析式及顶点D的坐标;
(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:
探究一:如图1,设△PAD的面积为S,令W=t•S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;
探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线y=ax2+bx+c(a≠0)对称轴是直线x=

【答案】分析:(1)由抛物线的对称轴求出a,就得到抛物线的表达式了;
(2)①下面探究问题一,由抛物线表达式找出A,B,C三点的坐标,作作DM⊥y轴于M,再由面积关系:SPAD=S梯形OADM-SAOP-SDMP得到t的表达式,从而W用t表示出来,转化为求最值问题.
②难度较大,运用分类讨论思想,可以分三种情况:
(1)当∠P1DA=90°时;(2)当∠P2AD=90°时;(3)当AP3D=90°时;思路搞清晰问题就好解决了.
解答:解:(1)∵抛物线y=ax2-x+3(a≠0)的对称轴为直线x=-2.



∴D(-2,4).

(2)探究一:当0<t<4时,W有最大值.
∵抛物线交x轴于A、B两点,交y轴于点C,
∴A(-6,0),B(2,0),C(0,3),
∴OA=6,OC=3.(4分)
当0<t<4时,作DM⊥y轴于M,
则DM=2,OM=4.
∵P(0,t),
∴OP=t,MP=OM-OP=4-t.
∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP
=
=
=12-2t(6分)
∴W=t(12-2t)=-2(t-3)2+18
∴当t=3时,W有最大值,W最大值=18.
探究二:
存在.分三种情况:
①当∠P1DA=90°时,作DE⊥x轴于E,则OE=2,DE=4,∠DEA=90°,
∴AE=OA-OE=6-2=4=DE.
∴∠DAE=∠ADE=45°,
∴∠P1DE=∠P1DA-∠ADE=90°-45°=45度.
∵DM⊥y轴,OA⊥y轴,
∴DM∥OA,
∴∠MDE=∠DEA=90°,
∴∠MDP1=∠MDE-∠P1DE=90°-45°=45度.
∴P1M=DM=2,
此时
又因为∠AOC=∠P1DA=90°,
∴Rt△ADP1∽Rt△AOC,
∴OP1=OM-P1M=4-2=2,
∴P1(0,2).
∴当∠P1DA=90°时,存在点P1,使Rt△ADP1∽Rt△AOC,
此时P1点的坐标为(0,2)
②当∠P2AD=90°时,则∠P2AO=45°,




∴△P2AD与△AOC不相似,此时点P2不存在.(12分)(结论(1分),过程1分)
③当∠AP3D=90°时,以AD为直径作⊙O1,则⊙O1的半径
圆心O1到y轴的距离d=4.
∵d>r,
∴⊙O1与y轴相离.
不存在点P3,使∠AP3D=90度.
∴综上所述,只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.
点评:此题综合性较强,考查函数基本性质,三角形相似的性质,辅助线的作法,探究性问题,还运用分类讨论思想,难度大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标xOy中,反比例函数y=
k
x
的图象与y=
3
x
的图象关于x轴对称,又与直线y=ax+2交于点A(m,3).已知点M(-3,y1)、N(l,y2)和Q(3,y3)三点都在反比例函数y=
k
x
的图象上. 
(l)比较y1、y2、y3的大小;
(2)试确定a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系里,如图,已知直线:y=-x+3
2
交y轴于点A,交x轴于点B,三角板OCD如图1置,其中∠D=30°,∠OCD=90°,OD=7,把三角板OCD绕点.顺时针旋转15°,得到△OC1D1(如图2),这时OC1交AB于点E,C1D1交AB于点F.
(1)求∠EFC1的度数;
(2)求线段AD1的长;
(3)若把△OC1D1,绕点0顺时针再旋转30.得到△OC2D2,这时点B在△OC2D2的内部、外部、还是边上?证明你的判断.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标中,已知点P(3-m,2m-4)在第一象限,则实数m的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,已知直线y=kx+b与直线y=
1
2
x
平行,分别交x轴,y轴于A,B两点,且A点的横坐标是-4,以AB为边在第二象限内作矩形ABCD,使AD=
5

(1)求矩形ABCD的面积;
(2)过点D作DH⊥x轴,垂足为H,试求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为
y=-
6
x
y=-
6
x

查看答案和解析>>

同步练习册答案