精英家教网 > 初中数学 > 题目详情
如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.
(1)求证:△ADE∽△BEC;
(2)当点E为AB边的中点时(如图2),求证:①AD+BC=CD;②DE,CE分别平分∠ADC,∠BCD;
(3)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.

【答案】分析:(1)∠A=∠D=90°,然后利用∠DEC=90°得到∠AED=∠ECB,这样就可以证明△ADE∽△BEC;
(2)过点E作梯形两底的平行线交腰CD于F,则F是CD的中点,然后利用梯形的中位线就可以证明①和②;
(3)主要利用(1)中的相似三角形带来的比例线段和勾股定理解题.
解答:(1)证明:∵梯形ABCD是直角梯形
∴∠A=∠B=90°
又∵∠DEC=90°
∴∠AED+∠BEC=90°
∵∠BEC+∠BCE=90°
∴∠AED=∠BCE
∴△ADE∽△BEC

(2)证明:过点E作EF∥AD,交CD于F,则EF既是梯形ABCD的中位线,又是Rt△DEC斜边上的中线.
∵AD+BC=2EF,CD=2EF
∴AD+BC=CD
∵FD=FE=CD
∴∠FDE=∠FED
∵EF∥AD
∴∠ADE=∠FED
∴∠FDE=∠ADE,即DE平分∠ADC
同理可证:CE平分∠BCD

(3)解:设AD=x,由已知AD+DE=AB=a得DE=a-x,又AE=m
在Rt△AED中,由勾股定理得:x2+m2=(a-x)2,化简整理得:a2-m2=2ax①
在△EBC中,由AE=m,AB=a,得BE=a-m
因为△ADE∽△BEC,所以
即:
解得:
所以△BEC的周长=BE+BC+EC=
==
=
把①式代入②,得△BEC的周长=BE+BC+EC=
所以△BEC的周长与m无关.
点评:此题主要考查了梯形的中位线的性质,相似三角形的判定与性质,勾股定理及直角三角形的性质等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°,试猜想GE、BE、GD三线段之间的关系,并证明你的结论;
(2)在(1)的条件下,若以C为圆心,CD为半径作圆,试判断此圆与直线EG的位置关系,并说明理由;
(3)运用(1)中解答所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在直角梯形ABCD中,∠B=90°,DC∥AB,动点P从B点出发,沿折线B→C→D→A运动,点P运动的速度为2个单位长度/秒,若设点P运动的时间为x秒,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积为(  )
精英家教网
A、16B、48C、24D、64

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.有两个动点E、F分别在线段CD与BC上运动,点E以每秒1cm的速度从点C向点D匀速运动.点F以每秒2cm的速度从点B向点C匀速运动;当其中一点到达终点时,另一点也随之停止.设运动的时间为t秒.
(1)求AD的长;
(2)设四边形BFED的面积为y,求y 关于t的函数关系式,并写出t的取值范围;
(3)点E、F在运动过程中,如果由点C、E、F构成的三角形与△BDC相似,求线段BF的长.

查看答案和解析>>

同步练习册答案