精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC为等边三角形,边长为2cm,D为BC中点,△AEC是△ADB绕点A旋转60°得到的,则∠BAE=
 
度;BE=
 
cm.若连接DE,则△ADE为
 
三角形.
分析:根据题意可得∠CAD=∠BAD=30°,因为△AEC是△ADB绕点A旋转60°得到的所以∠EAC=∠CAD=30°,AD=AE,那么∠BAE=90°,∠EAD=60°,在等边△ADE,由勾股定理得BE的值.
解答:解:因为△ABC为等边三角形,D为BC中点,
由等边三角形三边合一的性质得AD也是∠BAC的角平分线,即∠CAD=∠BAD=30°,
因为△AEC是△ADB绕点A旋转60°得到的所以∠EAC=∠CAD=30°,AD=AE,
那么∠BAE=90°,∠EAD=60°,△ADE为等边三角形,
因为AB=2cm,则AD=AE=
3
cm,由勾股定理得BE=
3+4
=
7
cm.
故答案为90,
7
,等边.
点评:此题考查了旋转的性质及等边三角形的判定,解答时要注意分析图形的特点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,△ABC为等边三角形,P为三角形内一点,将△ABP绕A点逆时针旋转60°后与△ACP′重合,若AP=3,则PP′=
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.
(1)求证:△ACD≌△CBF;
(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1
(1)求证∠BPQ=60°
(2)求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,D、F分别为CB、BA上的点,且CD=BF,以AD为一边作等边三角形ADE.
①△ACD与△CBF是全等三角形吗?说说你的理由.
②ED=FC吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边△,EC=ED,∠CED=120゜,P为BD的中点,求证:AE=2PE.

查看答案和解析>>

同步练习册答案