【题目】根据直尺和三角尺的实物摆放图,解决下列问题.
(1)如图1,是我们学过的用直尺和三角尺画平行线的方法的示意图,画图的原理是__________;
(2)如图2,图中互余的角有________________,若要使直尺的边缘DE与三角尺的AB边平行,则应满足_________(填角相等);
(3)如图3,若BC∥GH,试判断AC和FG的位置关系,并证明.
【答案】(1)同位角相等,两直线平行;(2)与;与,或者;(3),证明见解析
【解析】
(1)由平行线的判定定理即可得出结论;
(2)根据余角的性质和平行线的判定定理即可得到结论;
(3)根据平行线的性质得到∠ABC=∠HGA,根据余角的性质得到∠CAB=∠FGE,根据平行线的判定定理即可得到结论.
(1)如图所示:
根据题意得出:∠1=∠2;∠1和∠2是同位角;
∵∠1=∠2,
∴a∥b(同位角相等,两直线平行);
故答案为:同位角相等,两直线平行;
(2)∵∠ACB=90°,∠DCE=180°,
∴∠A+∠B=90°,∠ACE+∠BCD=90°,
∴图中互余的角有∠A与∠B,∠ACE与∠BCD,
当∠A=∠ACE,AB∥DE,
故答案为:∠A与∠B,∠ACE与∠BCD,∠A=∠ACE;
(3)AC∥FG,
理由:∵BC∥GH,
∴∠ABC=∠HGA,
∴∠ABC=∠HGA,
∴90°-∠ABC=90°-∠HGA,
∵90°-∠ABC=∠CAB,90°-∠HGA=∠FGE,
∴∠CAB=∠FGE,
∴AC∥FG.
科目:初中数学 来源: 题型:
【题目】直线y=kx+b与抛物线y=x2交于A(x1,y1),B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=.
(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若 时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG 与△ADM相似?若存在,求出所有符合条件的直线QG的解析式;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值 (单位:秒)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为3,∠EAC=60°,求AD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.
(1)求证:AC是⊙O的切线;
(2)已知圆的半径R=5,EF=3,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售A、B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
教学设备 | A | B |
进价(万元/套) | 3 | 2.4 |
售价(万元/套) | 3.3 | 2.8 |
该商场计划购进两种教学设备若干套,共需132万元,全部销售后可获毛利润18万元.
(1)该商场计划购进A、B两种品牌的教学设备各多少套?
(2)通过市场调查,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少数量的1.5倍.若用于购进这两种教学设备的总资金不超过138万元,则A种设备购进数量最多减少多少套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为( )
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC的中点,将△ADE绕点A按顺时针方向旋转一个角度α(0°<α<90°)得到△AD'E′,连接BD′、CE′,如图1.
(1)求证:BD′=CE';
(2)如图2,当α=60°时,设AB与D′E′交于点F,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com