科目:初中数学 来源: 题型:
如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A、B重合),点F在BC边上(不与点B、C重合)
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;
依此操作下去
(1) 图2中的三角形EFD是经过两次操作后得到的,其形状为_______,求此时线段EF的长;
(2) 若经过三次操作可得到四边形EFGH的形状为_________,此时AE与BF的数量关系是_______;
① 请判断四边形EFGH的形状为______,此时AE与BF的数量关系是_______
② 以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图。
根据统计图,解答下列问题:
(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;
(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数较稳定?
查看答案和解析>>
科目:初中数学 来源: 题型:
已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10,BC=8,CA=6,则点O到三边AB、AC和BC的距离分别等于( )
| A. | 2、2、2 | B. | 3、3、3 | C. | 4、4、4 | D. | 2、3、5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com