精英家教网 > 初中数学 > 题目详情

在RT△ABC中,∠A=90°,AB=3,AC=4,BC=5,∠ABC,∠ACB的平分线交于P点,PE⊥BC于E点,求BE•CE的值.

解:过P作AC、AB的垂线,交AC于点F,交AB于点G.
∵∠ABC,∠ACB的平分线交于P点,PE⊥BC于E点,
∴PE=PF=PG,
∴P是三角形ABC的内心,即内切圆的圆心.PE就是内切圆的半径.
设直角三角形ABC内切圆的半径PE=r,则
r=2×=2×=1;
在四边形PFAG中,PG⊥AB,AF⊥AB,
∴PG∥FA,∠A=90°,
∴四边形PFAG是正方形,
∴AG=PG=AF=1,
∴BG=2,CF=3;
又∵∠ABC,∠ACB的平分线交于P点,
∴BG=BE=2,CE=CF=3,
∴BE•CE=2×3=6.
分析:过P作AC、AB、BC的垂线,根据角平分线的性质可得三条线段相等.所以P是三角形ABC的内心,即内切圆的圆心.PE就是内切圆的半径.根据直角三角形内切圆的半径=2S△ABC÷L△ABC可得,PE=1.
点评:本题考查了角平分线的性质.解答该题时,证明四边形AFPG是正方形是求BE、CE的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案