精英家教网 > 初中数学 > 题目详情

【题目】舟山市2010﹣2014年社会消费品零售总额及增速统计图如图:
请根据图中信息,解答下列问题:
(1)求舟山市2010﹣2014年社会消费品零售总额增速这组数据的中位数.
(2)求舟山市2010﹣2014年社会消费品零售总额这组数据的平均数.
(3)用适当的方法预测舟山市2015年社会消费品零售总额(只要求列式说明,不必计算出结果).

【答案】
(1)解:数据从小到大排列13.5%,14.2%,15.4%,17.0%,18.4%,

舟山市2010﹣2014年社会消费品零售总额增速这组数据的中位数是15.4%


(2)解:舟山市2010﹣2014年社会消费品零售总额这组数据的平均数 =292.6(亿元)
(3)解:从增速中位数分析,舟山市2015年社会消费品零售总额为376.6×(1+15.4%)=435.124(亿元)
【解析】解:(1)根据中位数的定义,可得答案(2)根据平均数的定义,可得答案;(3)根据增长率的中位数,可得2015年的销售额.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形 ABCD 中,AE 平分∠BAD,交 BC 于 E,过 E 做 EF⊥AD 于 F,连接BF交AE于P,连接PD.

(1)求证:四边形ABEF 是正方形;
(2)如果AB=6,AD=8,求tan∠ADP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线y= x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.
①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;

②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,函数y= (x>0)的图象与直线y=x﹣2交于点A(3,m).
(1)求k、m的值;
(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y= (x>0)的图象于点N. ①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为(
A.2.3
B.2.4
C.2.5
D.2.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+ b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.

(1)这个格点多边形边界上的格点数b=(用含a的代数式表示).
(2)设该格点多边形外的格点数为c,则c﹣a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.

(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度(结果精确到1m).
备用数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题
(1)作△ABC的外接圆;
(2)若AC=BC,AB=8,C到AB的距离是2,求△ABC的外接圆半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).

(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案