【题目】如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)当AM的值为 时,四边形AMDN是矩形,请你把猜想出的AM值作为已知条件,说明四边形AMDN是矩形的理由.
【答案】(1)见解析(2)当AM=2时,说明四边形是矩形
【解析】
(1)根据菱形的性质可得AB∥CD,根据两直线平行,内错角相等可得∠NDE=∠MAE,根据对顶角相等可得∠DEN=∠AEM,根据中点的定义求出DE=AE,然后利用“角边角”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=AM,然后利用一组对边平行且相等的四边形是平行四边形证明;
(2)首先证明△AEM是等边三角形,进而得到AE=ED=EM,利用三角形一边上的中线等于斜边一半判断出△AMD是直角三角形,进而得出四边形AMDN是矩形.
(1)∵点E是AD边的中点,
∴AE=ED,
∵AB∥CD,
∴∠NDE=∠MAE,
在△NDE和△MAE中,
,
∴△NDE≌△MAE(ASA),
∴ND=AM,
∵ND∥AM,
∴四边形AMDN是平行四边形;
(2)当AM=2时,说明四边形是矩形.
∵E是AD的中点,
∴AE=2,
∵AE=AM,∠EAM=60°,
∴△AME是等边三角形,
∴AE=EM,
∴AE=ED=EM,
∴∠AMD=90°,
∵四边形ABCD是菱形,
故当AM=2时,四边形AMDN是矩形.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线的表达式为,点A,B的坐标分别为
(1,0),(0,2),直线AB与直线相交于点P.
(1)求直线AB的表达式;
(2)求点P的坐标;
(3)若直线上存在一点C,使得△APC的面积是△APO的面积的2倍,直接写出点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ABC中,AE平分∠CAB交BC于点E,AC=6,CE=3,,BE=5,点F是边AB上的动点(点F与点A,B不重合),联结EF,设BF=x,EF=y.
(1)求AB的长;
(2)求y关于x的函数解析式,并写出函数的定义域;
(3)当△AEF为等腰三角形时,直接写出BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解题
阅读材料:
两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是:将一个因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的前两位,将两个因数的个位数字之积作为计算结果的后两位(数位不足两位,用0补齐)。
比如,它们乘积的前两位是,它们乘积的后两位是,所以;
再如,它们乘积的前两位是,它们乘积的后两位是,所以;
又如,,不足两位,就将6写在百位:,不足两位,就将9写在个位,十位上写0,所以
该速算方法可以用我们所学的整式乘法与分解因式的知识说明其合理性;
设其中一个因数的十位数字为,个位数字是,(、表示1~9的整数),则该数可表示为,另一因数可表示为.
两数相乘可得:
.
(注:其中表示计算结果的前两位,表示计算结果的后两位。)
问题:
两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.
如、、等.
(1)探索该类乘法的速算方法,请以为例写出你的计算步骤;
(2)设十位数字与个位数字相同的因数的十位数字是,则该数可以表示为___________.
设另一个因数的十位数字是,则该数可以表示为___________.(、表示1~9的正整数)
(3)请针对问题(1)(2)中的计算,模仿阅读材料中所用的方法写出如:的运算式:____________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;
(1)这次调查获取的样本容量是 ;
(2)由统计图可知,这次调查获取的样本数据的众数是 ;中位数是 ;
(3)求这次调查获取的样本数据的平均数;
(4)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是( )
A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线与x轴交于点A,与y轴交于点B,菱形ABCD如图放置在平面直角坐标系中,其中点D在x轴负半轴上,直线y=x+m经过点C,交x轴于点E.
①请直接写出点C、点D的坐标,并求出m的值;
②点P(0,t)是线段OB上的一个动点(点P不与O、B重合),经过点P且平行于x轴的直线交AB于M、交CE于N.设线段MN的长度为d,求d与t之间的函数关系式(不要求写自变量的取值范围);
③点P(0,t)是y轴正半轴上的一个动点,为何值时点P、C、D恰好能组成一个等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过矩形的对称中点E,且与边BC交于点D,若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,则此直线的解析式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com