精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,CD是Rt△ABC的斜边AB上的高,且BC=a,AB=c,CD=h,AD=q,DB=p.求证:h2=p•q,a2=p•c.
分析:欲证:h2=p•q,可以证明Rt△ADC∽Rt△CDB得出,欲证a2=p•c,可以证明Rt△CDB∽Rt△ACB得出.
解答:证明:Rt△ABC,CD⊥AB,
∴∠ADC=∠CDB=90°,∠ACD=90°,
∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,
∴∠BCD=∠A,
∴Rt△ADC∽Rt△CDB,
AD
CD
=
CD
BD
?
q
h
=
h
p

∴h2=p•q;
同理可证Rt△CDB∽Rt△ACB,
得:a2=p•c.
点评:乘积的形式通常可以转化成比例的形式,通过相似三角形的性质得出.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,CD是⊙O的直径,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,OA=10,则AB=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

1、已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则∠DBE=
55
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,CD是△ABC的高,AC=4,BC=3,DB=
95

(1)求AD的长;
(2)△ABC是直角三角形吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•河北区一模)已知,如图,CD是⊙O的直径,BC是⊙O的切线,切点为C,BC=
3
,BF=
1
2
,AE:EF=8:3
求:ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,CD是Rt△FBE的中位线,A是EB延长线上一点,AD∥BC.
(1)证明四边形ABCD是平行四边形.
(2)若AD=3cm,求EF的长.

查看答案和解析>>

同步练习册答案