精英家教网 > 初中数学 > 题目详情
5.如图:矩形ABCD中,AB=2,BC=5,E、G分别在AD、BC上,且DE=BG=1.
(1)判断△BEC的形状,并说明理由?
(2)判断四边形EFGH是什么特殊四边形?并证明你的判断.

分析 (1)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;
(2)根据矩形的性质和平行四边形的判定,推出平行四边形DEBG和AECG,推出EH∥FG,EF∥HG,推出平行四边形EFGH,根据矩形的判定推出即可.

解答 解:(1)△BEC是直角三角形:理由如下:
∵四边形ABCD是矩形,
∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,
由勾股定理得:CE=$\sqrt{C{D}^{2}+D{E}^{2}}$=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
同理BE=2$\sqrt{5}$,
∴CE2+BE2=5+20=25,
∵BC2=52=25,
∴BE2+CE2=BC2
∴∠BEC=90°,
∴△BEC是直角三角形.
(2)四边形EFGH为矩形,理由如下:
∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,
∵DE=BG,
∴四边形DEBG是平行四边形,
∴BE∥DG,
∵AD=BC,AD∥BC,DE=BG,
∴AE=CG,
∴四边形AECG是平行四边形,
∴AG∥CE,
∴四边形EFGH是平行四边形,
∵∠BEC=90°,
∴平行四边形EFGH是矩形.

点评 本题综合考查了勾股定理及逆定理,矩形、平行四边形的性质和判定,三角形的面积等知识点的运用,主要培养学生分析问题和解决问题的能力,此题综合性比较强,题型较好,难度也适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.为了更好治理岳阳河水质,安岳县污水处理公司计划购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量如表:
A型B型
价格(万元/台)mn
处理污水量(吨/月)250200
经调查:买一台A型比购B型多3万元,买2台A型比购买3台B型少5万元.
(1)求m,n的值;
(2)经预算,购买设备自己不超过117万元,你认为有哪几种购买方案?
(3)在(2)的条件下,若每月要求处理无水不低于2050吨,为节约资金,请你为公司设计一种最省钱的方案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.阅读下列材料,然后回答问题:
在进行二次根式运算时,我们有时会碰上如$\frac{5}{\sqrt{3}}$、$\frac{2}{\sqrt{3}+1}$这样的式子,其实我们还可以将其进一步化简:$\frac{5}{\sqrt{3}}$=$\frac{5×\sqrt{3}}{\sqrt{3}×\sqrt{3}}$=$\frac{5}{3}$$\sqrt{3}$;
$\frac{2}{\sqrt{3}+1}$=$\frac{2×(\sqrt{3-1)}}{(\sqrt{3}+1)(\sqrt{3-1)}}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-1}$=$\sqrt{3}$-1.
以上这种化简过程叫做分母有理化.
$\frac{2}{\sqrt{3}+1}$还可以用以下方法化简:
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3})^{2}-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3+1}}$=$\sqrt{3}$-1.
(1)请任用其中一种方法化简:
①$\frac{4}{\sqrt{15}-\sqrt{11}}$;
②$\frac{2}{\sqrt{2n-1}+\sqrt{2n+1}}$(n为正整数);
(2)化简:$\frac{2}{\sqrt{3}+1}$+$\frac{2}{\sqrt{5}+\sqrt{3}}$+$\frac{2}{\sqrt{7}+\sqrt{5}}$+…$\frac{2}{\sqrt{101}+\sqrt{99}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在平面直角坐标系中,点P(m2-n2,$\frac{1}{{{m^2}n-m{n^2}}}$)满足m+n=4mn时,就称点P为“曲点”.若两个“曲点”A,B横坐标分别为a和2a,O为坐标原点,求△OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.因式分解
(1)4a(x-3)+2b(3-x)     
(2)x4-18x2+81
(3)4b(1-b)3+2(b-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.观察下列数表:
根据数表所反映的规律,猜想第n行与第n列交叉点上的数为3n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,直线OA:y=$\frac{1}{3}$x与直线AB:y=kx+b相交于点A(9,3),点B坐标为(0,12).
(1)求直线AB的表达式;
(2)点P是线段OA上任意一点(不与点O,A重合),过点P作PQ∥y轴,交线段AB于点Q,分别过P,Q作y轴的直线,垂足分别为M,H,得矩形PQHM.如果矩形PQHM的周长为20,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.分解因式:16x2-(x2+4)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.绝对值不小于4且小于7的所有负整数的积是-120.

查看答案和解析>>

同步练习册答案