精英家教网 > 初中数学 > 题目详情
如图,已知∠ACB=70°,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=
17.5°
17.5°
分析:设∠E=x,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
解答:解:设∠E=x,
∵DF=DE,
∴∠DFE=∠E=x,
∴∠CDG=∠E+∠DFE=2x,
∵CG=CD,
∴∠CDG=∠CGD=2x,
∴∠ACB=∠CDG+∠CGD=2x+2x=4x,
∵∠ACB=70°,
∴4x=70°,
∴x=17.5°,
即∠E=17.5°.
故答案为:17.5°.
点评:本题主要考查了等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并列出方程是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知∠ACB=∠CBD=90°,BC=a,AC=b,当CD=(  )时,△CDB∽△ABC.
A、
a2
b
B、
b2
a
C、
b
a
a2+b2
D、
a
b
a2+b2

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知∠ACB是⊙O的圆周角,∠ACB=40°,则圆心角∠AOB=
80
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠ACB=∠BDA=90°,要使△ABC≌△BAD,还需要添加一个条件,这个条件可以是
AC=BD
AC=BD
BC=AD
BC=AD
∠ABC=∠BAD
∠ABC=∠BAD
∠CAB=∠DBA
∠CAB=∠DBA

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图(1)中的△ACB绕点C顺时针方向旋转到图(2)的位置,点E在边AB上,AC交DE于点G,则线段FG的长为
5
3
2
5
3
2
cm(保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠ACB=90°,∠DAB=70°,AC平分∠DAB,∠1=35°.
①求∠B的度数;   
②求证:AB∥CD.

查看答案和解析>>

同步练习册答案