【题目】数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:
记录 | 天平左边 | 天平右边 | 状态 |
记录一 | 6个乒乓球, 1个10克的砝码 | 14个一次性纸杯 | 平衡 |
记录二 | 8个乒乓球 | 7个一次性纸杯, 1个10克的砝码 | 平衡 |
请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克?
解:(1)设一个乒乓球的质量是克,则一个这种一次性纸杯的质量是______克;(用含的代数式表示)
(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD向右平移一段距离后得到四边形.
(1)找出图中存在的平行且相等的四条线段(即四条线段全部互相平行且相等);
(2)找出图中存在的四组相等的角;
(3)四边形ABCD与四边形的形状、大小相同吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=x2+x﹣的图象与x轴交于点 A,B,交 y 轴于点 C,抛物线的顶点为 D.
(1)求抛物线顶点 D 的坐标以及直线 AC 的函数表达式;
(2)点 P 是抛物线上一点,且点P在直线 AC 下方,点 E 在抛物线对称轴上,当△BCE 的周长最小时,求△PCE 面积的最大值以及此时点 P 的坐标;
(3)在(2)的条件下,过点 P 且平行于 AC 的直线分别交x轴于点 M,交 y 轴于点N,把抛物线y=x2+x﹣沿对称轴上下平移,平移后抛物线的顶点为 D',在平移的过程中,是否存在点 D',使得点 D',M,N 三点构成的三角形为直角三角形,若存在,直接写出点 D'的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论: ① c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am+bm+a>0(m≠﹣1);⑤设A(100,y),B(﹣100,y)在该抛物线上,则y>y.其中正确的结论有___________ .(写出所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)把数轴补充完整.
(2)在数轴上表示下列各数:3,﹣4,﹣(﹣1.5),﹣|﹣2|.
(3)用“<”连接起来._____________
(4)﹣|﹣2|与﹣4之间的距离是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动:擦出智慧的火花---------由特殊到一般的数学思想.
数学课上,李老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC上的点,过点E作EF⊥AE,过点F作FG⊥BC交BC的延长线于点G..
(1)求证:∠BAE=∠FEG.
(2)同学们很快做出了解答,之后李老师将题目修改成:如图2,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.请借助图1完成小明的证明;
在(2)的基础上,同学们作了进一步的研究:
(3)小聪提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小聪的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在面积为60的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=10,BC=12,则CE+CF的值为( )
A. 22-11B.
C. 或D. 或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某MP3生产商2014年各季度的产值情况如下表:(单位:万元) 季度第一季度第二季度第三季度第四季度产值10205060.
(1)根据表中的数据绘制成折线统计图;
(2)第四季度的产值比第一季度的产值增加百分之几?
季度 | 第一季度 | 第二季度 | 第三季度 | 第四季度 |
产值 | 10 | 20 | 50 | 60 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com