【题目】某商店购进甲、乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.
(1)求甲、乙商品的进货单价;
(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?
(3)在条件(2)下,并且不再考虑其他因素,若甲、乙两种商品全部售完,哪种方案利润最大?最大利润是多少?
【答案】(1)甲商品的进货单价是100元,乙商品的进货单价是80元;(2)有3种进货方案:①甲商品进货48件,乙商品进货52件;②甲商品进货49件,乙商品进货51件;③甲商品进货50件,乙商品进货50件(3)当甲商品进货48件,乙商品进货52件时,可获得最大利润,最大的利润是1520元.
【解析】
试题分析:(1)设甲商品的进货单价是x元,乙商品的进货单价是y元,根据“甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同”列方程组,解方程组即可求解;(2)设甲商品进货x件,则乙商品进货(100﹣x)件,根据两种商品的进货总价不高于9000元,两种商品全部售完后的销售总额不低于10480元即可列不等式组求解,即可确定方案;(3)找出销售利润与x的函数关系式,利用一次函数的性质即可求解.
试题解析:(1)设甲商品的进货单价是x元,乙商品的进货单价是y元.
根据题意得:,
解得:x=100,y=80,
答:甲商品的进货单价是100元,乙商品的进货单价是80元;
(2)设甲商品进货x件,则乙商品进货(100﹣x)件.
根据题意得:,
解得:48≤x≤50.
又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案:
①商品进货48件,乙商品进货52件;
②甲商品进货49件,乙商品进货51件;
③甲商品进货50件,乙商品进货50件
(3)销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,
则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).
此时,乙商品进货100﹣48=52(件).
答:当甲商品进货48件,乙商品进货52件时,可获得最大利润,最大的利润是1520元.
科目:初中数学 来源: 题型:
【题目】数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础。结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示1和4的两点之间的距离是______;表示-3和2的两点之间的距离是______;
表示数a和-2的两点之间的距离是3,那么a=________;一般地,数轴上表示数a和数b的两点之间的距离等于__________.
(2)若数轴上表示数a的点位于-4与2之间,则=_______.
(3)是否存在数a,使代数式的值最小?如果存在,请写出数a=______,此时代数式的最小值是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.
(1)求抛物线的解析式.
(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.
①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.
②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com