A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | 2$\sqrt{5}$ |
分析 根据菱形的性质可得点B与点D关于直线AC对称,连接BE与AC相交于点P,根据轴对称确定最短路线问题,BE的长度即为PE+PD的最小值,连接BD,根据菱形的性质求出∠BCD=60°,从而判断出△BCD是等边三角形,再根据等边三角形的性质求出BE的长度即可.
解答 解:∵四边形ABCD是菱形,
∴点B与点D关于直线AC对称,
如图,连接BE与AC相交于点P,由轴对称确定最短路线问题,BE的长度即为PE+PD的最小值,
连接BD,∵∠B=120°,
∴∠BCD=180°-120°=60°,
又∵BC=CD,
∴△BCD是等边三角形,
∵E是CD的中点,
∴BE=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
即PE+PD的最小值为2$\sqrt{3}$.
故选B.
点评 本题考查了轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质,熟记各性质并准确确定出点P的位置是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 104° | B. | 113° | C. | 115° | D. | 120° |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com