精英家教网 > 初中数学 > 题目详情
19.已知2a+1的平方根±3,5a+2b-2的算术平方根是4,则3a-4b的平方根是±4.

分析 根据平方根的平等于被开方数,解得a,b,将a,b代入,利用平方根的定义可得答案.

解答 解:依题知:2a+1=9      
解得,a=4,
∵5a+2b-2=16,
∴5×4+2b-2=16
解得b=-1
所以3a-4b=3×4-4×(-1)=16,
16的平方根为±4,
故答案为:±4.

点评 本题考查了平方根,利用平方根的平方等于被开方数得出方程是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.△ABC中,∠A=90°,∠C=50°20′,则∠B=39°40′.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若5x+1=3,则5x=$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)如图1,已知△ABC的面积是30,CD、BE分别是△ABC的AB、AC边上的中线,CD、BE相交于点O,求四边形ADOE的面积可以用如下方法:连结AO,由AD=DB得:S△ADC=$\frac{1}{2}$S△ABC=15,S△ADO=S△BDO,同理:S△ABE=$\frac{1}{2}$S△ABC=15,S△AEO=S△CEO,设S△ADO=x,S△AEO=y,则S△BDO=x,S△CEO=y,由题意,可列方程组为:$\left\{\begin{array}{l}2x+y=15\\ x+2y=15\end{array}$,通过解这个方程组可求得四边形ADOE的面积为10.

(2)如图2,△ABC的面积是36,D、E分别是边AB、AC边上的点,且AD:DB=1:3,CE:AE=1:2,请你计算四边形ADOE的面积.
(3)如图3,?ABCD中,E是BC上一点,F是AB上一点,AE=CF,AE与CF交于点P,连结PD.求证:PD平分∠APC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.反比例函数y=$\frac{1-6t}{x}$的图象与直线y=-x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是t>$\frac{1}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,⊙O的半径是8,AB是⊙O的直径,M为AB上一动点,$\widehat{AC}$=$\widehat{CD}$=$\widehat{BD}$,则CM+DM的最小值为16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A(1,0),B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,-1),该抛物线与BE交于另一点F,连接BC.
(1)求该抛物线的解析式;
(2)一动点M从点D出发,以每秒1个单位的速度沿与y轴平行的方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?
(3)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,在菱形ABCD中,点E为AD的中点,点F为折线A-B-C-D上一个动点(从点A出发到点D停止),连结EF,设点F的运动路径的长为x,EF2为y,y关于x的函数图象由C1,C2,C3三段组成,已知C2与C3的界点N的坐标如图2所示.
(1)求菱形的边长;
(2)求图2中图象C3段的函数解析式;
(3)当7≤y≤28时,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.能与60°的角互余的角是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案