精英家教网 > 初中数学 > 题目详情
7.如图,在Rt△ABC中,∠C=90°,点D在BC上,点E在AB上,且DE∥AC,AE=5,DE=2,DC=3,动点P从点A出发,沿边AC以每秒2个单位长的速度向终点C运动,同时动点F从点C出发,在线段CD上以每秒1个单位长的速度向终点D运动,设运动时间为t秒.
(1)线段AC的长=6;
(2)当△PCF与△EDF相似时,求t的值.

分析 (1)作EH⊥AC于H,如图,易得四边形CDEH为矩形,从而得到CH=DE=2,EH=CD=3,然后利用勾股定理计算出AH即可得到AC的长;
(2)CF=t,PA=2t,则DF=3-t,CP=6-2t,0<t<3,由于∠C=∠FDE,根据两组对应边的比相等且夹角对应相等的两个三角形相似可分类讨论:若$\frac{CF}{DF}$=$\frac{CP}{DE}$时,△CFP∽△DFE,若$\frac{CF}{DE}$=$\frac{CP}{DE}$,则△CFP∽△DEF,然后分别利用相似比得到关于t的方程,再解方程求出t即可.

解答 解:(1)作EH⊥AC于H,如图,
∵∠C=90°,DE∥AC,
∴四边形CDEH为矩形,
∴CH=DE=2,EH=CD=3,
在Rt△AEH中,AH=$\sqrt{A{E}^{2}-E{H}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∴AC=CH+AH=2+4=6;
(2)CF=t,PA=2t,则DF=3-t,CP=6-2t,0<t<3,
∵∠C=∠FDE,
∴当$\frac{CF}{DF}$=$\frac{CP}{DE}$时,△CFP∽△DFE,即$\frac{t}{3-t}$=$\frac{6-2t}{2}$,整理得t2-7t+9=0,解得t1=$\frac{7-\sqrt{13}}{2}$,t2=$\frac{7+\sqrt{13}}{2}$(舍去),
∴当$\frac{CF}{DE}$=$\frac{CP}{DE}$时,△CFP∽△DEF,即$\frac{t}{2}$=$\frac{6-2t}{3-t}$,t=4(舍去),
综上所述,t的值为$\frac{7-\sqrt{13}}{2}$.

点评 本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.也考查了勾股定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,交y轴于C点,其中B点坐标为(3,0),C点坐标为(0,3),且图象对称轴为直线x=1.
(1)求此二次函数的关系式;
(2)P为二次函数y=ax2+bx+c在x轴下方的图象上一点,且S△ABP=S△ABC,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F,求证:CE与△CFG的外接圆相切.
点拨:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.【阅读理解】当a>0,b>0时,a=($\sqrt{a}$)2,b=($\sqrt{b}$)2则($\sqrt{a}$-$\sqrt{b}$)2=($\sqrt{a}$)2-2$\sqrt{ab}$+($\sqrt{b}$)2=a+b-2$\sqrt{ab}$≥0,那么$\frac{a+b}{2}$≥$\sqrt{ab}$,因此对任意两个正数a,b,即a>0,b>0,则有下面的不等式;$\frac{a+b}{2}$$≥\sqrt{ab}$,当且仅当a=b时取等号,我们把$\frac{a+b}{2}$叫做正数a,b的算术平均数,把$\sqrt{ab}$叫做正数a,b的几何平均数,于是上述的不等式可以表述为:两个正数的算术平均数不小于(即大于或等于)他们的几何平均数,它在数学中有广泛的应用,是解决最大(小)值问题的有力工具.
【实例剖析】已知x>0,求式子y=x+$\frac{4}{x}$的最小值.
解:令a=x,b=$\frac{4}{x}$,则由$\frac{a+b}{2}$≥$\sqrt{ab}$,得y=x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=2×$\sqrt{4}$=4,当且仅当x=$\frac{4}{x}$时,即x=2时,式子的最小值,最小值为4.
【学以致用】根据上面的阅读材料回答下列问题:
(1)已知x>0,则当x为$\frac{\sqrt{6}}{2}$时,式子y=2x+$\frac{3}{x}$取到最小值,最小值是2$\sqrt{6}$.
(2)用篱笆围一个面积为64m2的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短是多少米?
(3)已知x>0,则当x取何值时,式子y=$\frac{x}{{x}^{2}-2x+9}$取到最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,所有代表队要打多少场比赛?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.计算:(-3)2017•(-$\frac{1}{3}}$)2016=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,∠PAQ=∠MBN=30°,∠MBN的顶点B在射线AP上,射线BM和射线BN分别交射线AQ于点C、D,当∠MBN绕点B转动时.若AB=2$\sqrt{3}$,则CA•CD的最小值是(  )
A.3B.$\sqrt{3}$C.4D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.我们用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的七折出售;乙商店的优惠条件是,从第一本起按标价的八五折出售.
(1)若要购买22本练习本,到哪个商店购买更省钱.
(2)现有24元,最多可买多少本练习本?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若2x+3y-2=0,则9x-3•27y+1=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案