如图,∠AOB=70°,∠COD=80°,求∠AOD-∠BOC的度数.
科目:初中数学 来源:2014湘教版七年级上册(专题训练 状元笔记)数学:第四章 图形的认识 几何图形 线段、射线、直线 湘教版 题型:044
如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.
查看答案和解析>>
科目:初中数学 来源:学习周报 数学 人教课标七年级版 2009-2010学年 第19-26期 总第175-182期 人教课标版 题型:044
如图,∠
AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.查看答案和解析>>
科目:初中数学 来源:2014届江苏省泰兴市七年级上学期期末考试数学试卷(解析版) 题型:填空题
如图,已知:∠AOB=70°,∠BOC=30°,OM平分∠AOC,则∠BOM=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【考点】切线的性质;圆周角定理.
【专题】计算题.
【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APOB中,根据四边形的内角和求出∠AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出∠ADB的度数,再根据圆内接四边形的对角互补即可求出∠ACB的度数.
【解答】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),
连接BD,AD,如图所示:
∵PA、PB是⊙O的切线,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,
∵圆周角∠ADB与圆心角∠AOB都对弧AB,
∴∠ADB=∠AOB=70°,
又∵四边形ACBD为圆内接四边形,
∴∠ADB+∠ACB=180°,
则∠ACB=110°.
故选B。
【点评】此题考查了切线的性质,圆周角定理,圆内接四边形的性质,以及四边形的内角和,熟练掌握切线的性质是解本题的关键.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com