【题目】如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F。
(1)求证:∠FEB=∠ECF
(2)BC= 12, DE=8 求 EA的长。
【答案】(1)详见解析;(2)4.
【解析】
(1)利用切线长定理得到OC平分∠BCE,即∠ECF=∠BCO,利用切线的性质得OB⊥BC,则∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;
(2)连接OD,如图,利用切线长定理和切线的性质得到CD=CB=12,OD⊥CE,则CE=20,利用勾股定理可计算出BE=16,设⊙O的半径为r,则OD=OB=r,OE=16﹣r.在Rt△ODE中,根据勾股定理得r2+82=(16﹣r)2,解得r=6,即可得出EA的长.
(1)∵CB、CD分别切⊙O于点B,D,∴OBBC,OC平分∠BCE,即∠ECF=∠BCO.
∵∠OBC=90°,∴∠BCO+∠COB=90°.
∵EFOG,∴∠FEB+∠FOE=90°.
又∵∠COB=∠FOE,∴∠FEB=∠BCO=∠ECF.
(2) 连接OD.
∵CB、CD分别切⊙O于点B,D,∴ CD=CB=12,ODCE,∴CE=CD+DE=12+8=20.
在Rt△BCE中,
设⊙O的半径为r,则OD=OB=r,OE=16-r.
在Rt△ODE中,,解得:r=6.
∴EA=EB一2r=16 一12= 4.
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别 A(-3,4)B(-5,2)C(-2,1)
(1)画出 △ABC关于y 轴的对称图形 △A1B1C1;
(2)画出将△ABC 绕原点 O逆时针方向旋转90°得到的△A2B2C2 ;
(3)求(2)中线段 OA扫过的图形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,二次函数的图像交轴正半轴于点,顶点为,一次函数的图像交轴于点,交轴于点,的正切值为.
(1)求二次函数的解析式与顶点坐标;
(2)将二次函数图像向下平移个单位,设平移后抛物线顶点为,若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线与反比例函数(>0)的图象分别交于点 A(,4)和点B(8,),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)观察图象,当时,直接写出的解集;
(3)若点P是轴上一动点,当△COD与△ADP相似时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D、E分别是⊙O两条半径OA、OB的中点, .
(1)求证:CD=CE.
(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点,点P为第一象限抛物线上一点,且∠DAP=45°,则点P的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.
(参考数据:≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论:
①b2>4ac;②ac>0; ③当x>1时,y随x的增大而减小; ④3a+c>0;⑤任意实数m,a+b≥am2+bm.
其中结论正确的序号是( )
A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com