精英家教网 > 初中数学 > 题目详情
如图,在?ABCD中,AB=6cm,AD=AC=5cm.点P由C出发沿CA方向匀速运动,速度为1cm/s;同时,线段EF由AB出发沿AD方向匀速运动,速度为1cm/s,交AC于Q,连接PE、PF.若设运动时间为t(s)(0<t<5).解答下列问题:
(1)试判断△PEF的形状,并请说明理由.
(2)当0<t<2.5时,设△PEQ的面积为y(cm2),求出y(cm2)与t(s)之间的函数关系式.
分析:(1)根据条件可以得出△AEP≌△CPF,从而得出PE=PF,就可以得出得出△PEF的形状为等腰三角形;
(2)作PG⊥EF于G,就可以而出EG=3,由AB∥EF就可以得出
AE
AD
=
EQ
CD
就可以表示出EQ,近而表示出GQ和PQ,在Rt△PGQ中由勾股定理就可以表示出PG,根据三角形的面积公式就可以求出y与t的关系式.
解答:解:(1)△PEF为等腰三角形,
理由:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,AD∥BC,AB∥CD,
∴∠DAC=∠BCA.
∵AE=BF=CP=t,
∴CF=DE.
∵AD=AC,
∴AC=BC,
∴AP=CF.
∵在△AEP和△CPF中,
AE=CP
∠DAC=∠BCA
AP=CF

∴△AEP≌△CPF(SAS),
∴EP=PF.
∴△PEF为等腰三角形;

(2)作PG⊥EF于G,
∴EG=
1
2
EF.
∵AE∥BF,AB∥EF,
∴四边形ABFE是平行四边形,
∴AB=EF.
∵AB∥EF,AB∥CD,
∴EF∥CD,
AE
AD
=
EQ
CD

t
5
=
EQ
6

∴EQ=
6
5
t,
∴GQ=3-
6
5
t.
∵CP=AQ=t,
∴PQ=5-2t,
在Rt△PGQ中,由勾股定理,得
PG=
(5-2t)2-(3-
6
5
t)2

=4-
8
5
t.
∵S△PQE=
1
2
EQ•PG,
∴y=
1
2
×
6
5
t×(4-
8
5
t),
=-
24
25
t2+
12
5
t(0<t<2.5).
∴y与t之间的函数关系式为:y=-
24
25
t2+
12
5
t(0<t<2.5).
点评:本题考查了平行四边形的性质的运用,等腰三角形的判定及性质的运用,勾股定理的运用,平行线分线段成比例定理的运用,三角形的面积公式的运用,解答时运用相似表示出EQ的值和运用勾股定理表示PG的值是解答本题的难点和关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在?ABCD中,对角线AC、BD相交于点O,AB=
29
,AC=4,BD=10.
问:(1)AC与BD有什么位置关系?说明理由.
(2)四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在?ABCD中,∠A的平分线交BC于点E,若AB=10cm,AD=14cm,则EC=
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春一模)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在?ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•犍为县模拟)甲题:已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
乙题:如图,在?ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H.
(1)求证:△BAE∽△BCF.
(2)若BG=BH,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于点O,连接CE,则△CBE的周长是
2
13
+4
2
13
+4

查看答案和解析>>

同步练习册答案