(1)证明:∵PH⊥OB,MD⊥OB,
∴PH∥MD,
∵PM∥OB,QR∥OB,
∴PM∥QR,
∴四边形PQRM是平行四边形,
∵PH⊥OB,
∴∠PHO=90°,
∵PM∥OB,
∴∠MPQ=∠PHO=90°,
∴四边形PQRM为矩形;
(2)解:∠AOB=3∠BON.理由如下:
∵四边形PQRM为矩形,
∴PS=SR=SQ=
PR,
∴∠SQR=∠SRQ,
又∵OP=
PR,
∴OP=PS,
∴∠POS=∠PSO,
∵QR∥OB,
∴∠SQR=∠BON,
在△SQR中,∠PSO=∠SQR+∠SRQ=2∠SQR=2∠BON,
∴∠POS=2∠BON,
∴∠AOB=∠POS+∠BON=2∠BON+∠BON=3∠BON,
即∠AOB=3∠BON.
分析:(1)根据垂直于同一直线的两直线平行可得PH∥MD,再根据平行于同一直线的两直线平行可得PM∥QR,然后求出四边形PQRM是平行四边形,再求出∠MPQ=90°,根据有一个角是直角的平行四边形是矩形证明即可;
(2)根据矩形的对角线互相平分可得PS=
PR,然后求出OP=PS,根据等边对等角的性质可得∠POS=∠PSO,再根据两直线平行,同位角相等可得∠SQR=∠BON,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PSO=2∠SQR,然后整理即可得解.
点评:本题考查了矩形的判定与性质,等边对等角的性质,两直线平行,同位角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.