精英家教网 > 初中数学 > 题目详情

2(pq+mn)+(2pqmn).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线PQ∥MN,C是MN上一点,CE交PQ于A,CF交PQ于B,且∠ECF=90°,如果∠FBQ=50°,则∠ECM的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在四边形ABCD中,AB=CD,P、Q分别是AD、BC的中点,M、N分别是对角线AC、BD的中点,证明:PQ⊥MN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线PQ∥MN,C是MN上一点,CE交PQ于A,CF交PQ于B,且∠ECF=90°,如果∠FBQ=50°,则∠ECM的度数为
40
40
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知过A(2,4)分别作x轴、y轴的垂线,垂足分别为M、N,若点P从O点出发,沿OM作匀速运动,1分钟可到达M点,点Q从M点出发,沿MA作匀速运动,1分钟可到达A点.
(1)经过多少时间,线段PQ的长度为2?
(2)写出线段PQ长度的平方y与时间t之间的函数关系式和t的取值范围;
(3)在P、Q运动过程中,是否可能出现PQ⊥MN?若有可能,求出此时间t;若不可能,请说明理由;
(4)是否存在时间t,使P、Q、M构成的三角形与△MON相似?若存在,求出此时间t;若不可能,请说明理由.

查看答案和解析>>

同步练习册答案