等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.
⑴ 当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?
⑵ 若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?
⑶ 在⑵的条件下,是否存在某一时刻,△ABC各边刚好与⊙O都相切?若存在,求出刚好符合条件时两个图形移动了多少时间?若不存在,能否改变AB、BC沿BA、BC方向的速度,使△ABC各边刚好与⊙O都相切.
⑴,⑵6秒,(3)若圆能在△ABC的内部时,则存在,4秒;若圆O不能在三角形的内部,则不存在,t=
解析:由切线长定理可知C’E= C’D,设C’D=x,则C’E=x,易知C’F=x
∴x+x=1 ∴x=-1 ∴CC’=5-1-(-1)=5- 2分
∴点C运动的时间为 3分
∴点B运动的的距离为 4分
⑵设一共经过了t秒,根据题意得:2t-5=t+1
t =6
答:一共经过了6秒 6分
⑶∵△ABC与⊙O从开始运动到第二次相切时,2t+1=t+5 t=4 7分
∴从开始运动到第二次相切的时间为4秒, 此时△ABC移至△A”B”C”处,
A”B”=1+4×=3 8分
连接B”O并延长交A”C”于点P,则B”P⊥A”C”,
且OP=<1 ∴此时⊙O与A”C”相交
∴不存在△ABC各边与⊙O都相切. 9分
设AB、BC沿BA、BC方向的速度为t,则(1+4t)×=1 10分
t= 11分
(1)当△ABC第一次与圆相切时,应是AC与圆相切.如图,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′′于F.设⊙O与直线l切于点D,连OD,则OE⊥A′C′,OD⊥直线l.由切线长定理,以及直角三角形的性质可求得CD的值,进而求得CC′的值,从而求得点C运动的时间,也就有了点运动的时间,点B移动的距离也就可求得了.
(2)△ABC与⊙O从开始运动到最后一次相切时,应为AB与圆相切,路程差为6,速度差为1,故从开始运动到最后一次相切的时间为6秒.
(3)若圆能在△ABC的内部时,则存在;若圆O不能在三角形的内部,则不存在;即求在(2)条件下,AC与圆的位置关系即可.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com