精英家教网 > 初中数学 > 题目详情
已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为
4
4
分析:连接AC,BD,FH,EG,得出平行四边形ABFH,推出HF=AB=2,同理EG=AD=4,求出四边形EFGH是菱形,根据菱形的面积等于
1
2
×GH×HF,代入求出即可.
解答:解:连接AC,BD,FH,EG,
∵E,F,G,H分别为边AB,BC,CD,DA的中点,
∴AH=
1
2
AD,BF=
1
2
BC,
∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,
∴AH=BF,AH∥BF,
∴四边形AHFB是平行四边形,
∴FH=AB=2,
同理EG=AD=4,
∵四边形ABCD是矩形,
∴AC=BD,
∵E,F,G,H分别为边AB,BC,CD,DA的中点,
∴HG∥AC,HG=
1
2
AC,EF∥AC,EF=
1
2
AC,EH=
1
2
BD,
∴EH=HG,GH=EF,GH∥EF,
∴四边形EFGH是平行四边形,
∴平行四边形EFGH是菱形,
∴FH⊥EG,
∴阴影部分EFGH的面积是
1
2
×HF×EG=
1
2
×2×4=4,
故答案为:4.
点评:本题考查了矩形的性质,菱形的判定和性质,平行四边形的判定等知识点,关键是求出四边形EFGH是菱形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,在矩形ABCD中,P是边AD上的动点,PE垂直AC于E,PF垂直BD于F,如果AB=3,AD=4,那么(  )
A、PE+PF=
12
5
B、
12
5
<PE+PF<
13
5
C、PE+PF=5
D、3<PE+PF<4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,在矩形ABCD中,M是边BC的中点,AB=3,BC=4,⊙D与直线AM相切于点E,
求⊙D的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在矩形ABCD中,AC是对角线.点P为矩形外一点且满足AP=PC,AP⊥PC.PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.
(1)若AP=
5
,AB=
1
3
BC,求矩形ABCD的面积;
(2)若CD=PM,求证:AC=AP+PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在矩形ABCD中,AB=4,AD=10,F是AD上一点,CF⊥EF于点F交AB于点E,
DC
CF
=
1
2
.求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,BE⊥AC于E,CF⊥BD于F,请你判断BE与CF的大小关系,并说明你的理由.

查看答案和解析>>

同步练习册答案